

Parallel and Distributed Computing Group
Department of Computer Science

Reutlingen University

Aspect‐oriented component assembly—
a case study in parallel software design

Clemens Dangelmayr and Wolfgang Blochinger

(Accepted Peer-Reviewed Manuscript Version)

This is the peer reviewed version of the following article:

C. Dangelmayr and W. Blochinger. Aspect-oriented component assembly - a case study in parallel
software design. Software: Practice and Experience, 39(9):807-832, 2009.

which has been published in final form at https://doi.org/10.1002/spe.912

This article may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Use of Self-Archived Versions.

@article{Dangelmayr2008,

author = {Dangelmayr, Clemens and Blochinger, Wolfgang},
title = {Aspect-oriented component assembly—a case study in parallel
 software design},
journal = {Software: Practice and Experience},
year = {2009},
volume = {39},
number = {9},
pages = {807--832},
doi = {10.1002/spe.912},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.912}

}

https://doi.org/10.1002/spe.912

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Aspect-Oriented Component
Assembly—A Case Study in
Parallel Software Design

C. Dangelmayr and W. Blochinger∗,†

University of Tübingen, Symbolic Computation Group, Sand 14, D-72076 Tübingen, Germany

SUMMARY

In this paper we deal with building parallel programs based on sequential application
code and generic components providing specific functionality for parallelization like load
balancing or fault tolerance. We describe an architectural approach employing aspect-
oriented programming to assemble arbitrary object-oriented components. Several non-
trivial crosscutting concerns arising from parallelization are addressed in the light of
different applications which are representative for the most common types of parallelism.
In particular, we demonstrate how aspect-oriented techniques allow us to leave all
existing code untouched. We evaluate and compare our approach to its counterparts
in conventional object-oriented programming.

key words: aspect-oriented programming; parallel programming; code re-use; software metrics

1. Introduction

Parallel software development has recently gained considerable importance. With the advent
of multi-core processors, traditional (sequential) software is only able to utilize a fraction of the
available computational power. Since parallelism must be exploited on the application level,
this new approach in microprocessor architecture requires substantial effort in the development
of appropriate software. Also, the increasing popularity of high performance computing clusters
built from commodity components further drives the demand for parallel applications.

The software developer typically employs parallel libraries or platform components to access
the functionality of the underlying parallel hardware. Traditionally, for parallelization one
has to make modifications to existing sequential code, e.g. restructuring parts of the code

∗Correspondence to: University of Tübingen, Symbolic Computation Group, Sand 14, D-72076 Tübingen,
Germany
†E-mail: blochinger@informatik.uni-tuebingen.de

Received
Copyright c⃝ 2000 John Wiley & Sons, Ltd. Revised

2 C. DANGELMAYR AND W. BLOCHINGER

and inserting API calls at appropriate places. Most often, when switching to another parallel
architecture different components have to be used. Thus, further modifications of the sequential
code become necessary.

Our work especially considers the fact that most often there exist highly optimized sequential
application code and conventionally implemented components of a parallel platform addressing
all functional and non-functional requirements of parallelization. In general, both parts are
developed by independent parties and integrated by a third party. Often, the parts accumulate
considerable domain-specific knowledge and are also subject to further development.

In this setting, non-intrusive techniques, i.e. an approach leaving existing code completely
untouched, are highly desirable. Subsequently, we show how techniques from aspect-oriented
programming [31] can be beneficially employed to address this specific issue. Specifically, we
make the following contributions:

1. We investigate the applicability of our approach in the light of representative applications
which exhibit different types of parallelism. We study several non-trivial crosscutting
concerns arising from parallelization and show how we can address them using generic
reusable components.

2. We describe a versatile approach to component assembly utilizing aspect-oriented
bridge templates to assemble arbitrary object-oriented software artifacts as lightweight
components. We identify several specific assembly issues and discuss how they can be
solved in an elegant way by aspect-oriented implementations of common design patterns.

3. We evaluate and compare our approach to its counterparts in pure object-oriented
programming. Here, we identify and quantify suitable code quality metrics. Our analysis
shows significantly improved code quality metrics and full reusability of all employed
components. Additionally, we conduct performance measurements which give evidence
that our techniques do not compromise parallel efficiency.

The remainder of our paper is organized as follows. In Section 2, we give a brief overview of
aspect-oriented concepts. Section 3 discusses our approach in detail. In Section 4, we present
code quality metrics and performance measurements. Section 5 deals with related work. Our
Conclusion (Section 6) discusses the benefits and limits of our method.

2. Aspect-Orientation

Like most other imperative programming paradigms, object-oriented programming exhibits
one significant drawback. It neglects the crosscutting nature of the various concerns of
complex software systems. Thus, the programmer is forced to apply a decomposition (dominant
decomposition [54]) which is constricted to one dimension. Whatever concrete approach of
decomposition is chosen, there will always be functionality scattering throughout the code.
Typical examples of this phenomenon are logging, persistence [41], and security [45]. The
tangling of modules, as a similar effect, mixes up code fragments of different concerns.
Scattering and tangling both lead to greatly reduced reusability and error-prone redundancies.
Thus, dominant decomposition seriously impairs keeping different concerns separate. This

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 3

Figure 1. Object-Oriented vs. Aspect-Oriented Integration of a Crosscutting Concern.

applies to object-oriented programming as well as most imperative programming paradigms
(for example COBOL [15]).

Technically, in common imperative programming languages these issues result from the
necessity to group consecutive functionality in the same compilation unit. Instructions that
are to be executed consecutively must be stated directly after another, even when they address
completely different concerns. In contrast, aspect-orientation permits to explicitly state the
position (or positions) where to insert code sequences. Specifically, it allows to separately define
instruction sequences together with their position in the code in an abstract and flexible way.
These groupings correspond to the different concerns of the system.

Aspect-orientation distinguishes between core and crosscutting concerns. Crosscutting
concerns cut across other concerns—they are assumed orthogonal to each other. To realize a
system that needs to address different concerns, aspect-orientation recommends separation of
concerns (coined by Dijkstra in [14]). After identifying the required concerns (compare [35, 51]),
core concerns are implemented as conventional components, while crosscutting concerns are
implemented as aspects. (There is a whole array of understandings of the concept aspect;
compare [30, 34, 42, 40, 11]. We will illustrate our own viewpoint in detail in Section 3.2.3.)

Ideally, all concerns can be addressed independently and implemented self-contained.
At some point in the development process, however, crosscutting concerns have to be
integrated into the concerns they cut across. This is illustrated in Figure 1. In the object-
oriented case, the crosscutting concern (e.g. logging) is integrated into the core concerns by
inserting corresponding method calls (e.g. logging statements) into the intercepted concern
implementation. Aspect-oriented programming, on the other hand, allows us to explicitly state
where to insert additional code sequences using aspect declarations. This keeps the intercepted
code base untouched and corresponding concerns separate. An aspect weaver reads out these
aspect declarations and inserts appropriate statements during compilation.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

4 C. DANGELMAYR AND W. BLOCHINGER

3. Component Assembly

In this section, we discuss our aspect-oriented approach to build a parallel application from
sequential code and generic components of a parallel platform. The specific challenge we
address is to assemble the original sequential algorithm and all components—neither modifying
sequential code nor the implementation of the components.

Section 3.1 gives an overview of our example applications, methods for their parallelization,
and the required system functionality. (A detailed treatment of this topic can be found in [22].)
Particularly, our discussion focuses on identifying crosscutting concerns.

In Section 3.2, we demonstrate how aspect-oriented techniques can be applied to achieve
our goal. To assemble all software artifacts (application code and platform components), we
employ tools provided by AspectJ [30] which is the most common language extension to Java
for aspect-oriented programming.

Our discussion in Section 3.3 shows benefits from using aspect-oriented instead of
conventional object-oriented programming. (In contrast to this qualitative analysis, we
compare both approaches quantitatively in Section 4.)

3.1. Concerns and Components

In order to demonstrate the wide applicability of our approach we have chosen three example
applications which exhibit different types of parallelism (see Section 3.1.2).

Typically, all of our example applications show a high degree of irregularity. An irregularly
structured problem is an application whose computation and communication patterns are
input-dependent, unstructured, and/or evolving during the computation. Consequently, in
order to minimize parallel overhead (e.g. idle times of processors and communication) several
decisions have to be made at run-time (e.g. problem decomposition, load balancing, or
allocation of communication channels). Such advanced functionality is typically provided by
sophisticated, pre-existing components of a parallel platform (see Section 3.1.3). This setting
enables us to discuss several non-trivial assembly issues.

3.1.1. Example Applications

Quicksort. Divide-and-conquer-algorithms recursively partition workload into smaller units,
which can be handled in parallel. Quicksort, as our first example application, recursively divides
the list to be sorted into smaller sublists separated by a pivot element. Smaller elements end
up in one sublist, larger ones in the other. Then, both lists can be sorted recursively. A basic
Java implementation of the sorting method is shown in Listing 1.

Matrix Multiplication. Our second example application is matrix multiplication. When
computing the product of a matrix and a vector, every element of the result vector is obtained
by multiplying the corresponding row of the matrix with the input vector—as highlighted for
the second element of the result vector in the following equation.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 5

void s o r t (Range range) {
i f (! range . p a r t i t i o n ab l e ()) return ;
Element p ivot = getElement (range . c en te r ()) ;
Pa r t i t i on p a r t i t i o n = pa r t i t i o n (range , p ivot) ;
s o r t (p a r t i t i o n . lowerHal f ()) ;
s o r t (p a r t i t i o n . upperHalf ()) ;

}

Listing 1. Basic Quicksort Method.

⎛

⎜⎜⎜⎝

a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...
a1m a2m . . . anm

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

b1

b2
...

bn

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

a11b1 + a21b2 + · · · + an1bn

a12b1 + a22b2 + · · · + an2bn
...

a1mb1 + a2mb2 + · · · + anmbn

⎞

⎟⎟⎟⎠

Listing 2 shows (restricted to relevant methods) a basic implementation of a Matrix class
allowing for multiplication with other matrices and/or vectors.

class Matrix {
Matrix mult ip ly (Matrix b) {

Matrix c = new Matrix () ;
for (int i = 0 ; i < b . getWidth () ; i++)

c . setColumn (i , mult ip ly (b . getColumn (i))) ;
return c ;

}
Vector mult ip ly (Vector b) {

Vector c = new Vector () ;
for (int i = 0 ; i < getHeight () ; i++)

c . setElement (i , getRow (i) . mult ip ly (b)) ;
return c ;

}
}

Listing 2. Basic Matrix/Vector Multiplication.

State Space Search. Discrete optimization problems are concerned with finding elements out
of a given (finite and discrete) set of possible solutions maximizing or minimizing a certain
function. These are often tackled by search techniques based on a state space graph. Paths
in this graph represent possible solutions. The state space graph is constructed step-by-step
heading for an optimal solution. Thus, the optimization process basically constitutes a graph
traversal. A generic graph search algorithm employs an agenda, which contains all currently
open nodes of the state space graph: the search frontier. In every step an element of the agenda
is extracted, visited, and expanded if possible. Discovered graph nodes are appended to the
agenda. This process is repeated until the agenda is empty. A basic traversal algorithm is
illustrated in Listing 3.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

6 C. DANGELMAYR AND W. BLOCHINGER

void t r av e r s e (Agenda agenda , Node root) {
agenda . append (root) ;
while (! agenda . isEmpty ()) {

Node node = agenda . ex t r a c t () ;
node . v i s i t () ;
for (Node su c c e s s o r : node . expand ())

agenda . append (su c c e s s o r) ;
}

}

Listing 3. Basic State Space Traversal Algorithm.

Often additional (heuristic) information is used for steering the graph traversal. As our third
example application we use a branch-and-bound approach tackling instances of the travelling
salesperson problem (TSP). Here, the state space tree is only expanded (branched) as long as
the length of the constructed tour does not exceed the length of the best tour already found
(bound). This can considerably reduce the amount of nodes to be visited.

3.1.2. Parallelization Techniques

In [22], parallel task decomposition is classified into recursive, data, explorative, and speculative
decomposition. Recursive decomposition typically employs a divide-and-conquer scheme,
recursively-decomposing tasks into smaller subtasks, which can be mapped to different
processors. Data decomposition can be applied to programs operating on large data sets.
These data sets are partitioned into subsets, which are processed in parallel. Explorative
decomposition is usually applied to search procedures. The search space is divided into
disjunctive subspaces, which are treated by different processors. (Speculative decomposition
is of less relevance for our topic. Typically, it is transparently applied by modern CPUs on
the instruction level.) Subsequently, we will see that each of these three types of parallelism is
exhibited by one of our example applications.

An example for recursive decomposition is quicksort. Here, tasks are associated with
recursive calls to the sorting method sort (compare Listing 1). These are associated with parts
of the sorting range, which can be sorted independently. An approach to parallelization lies in
mapping calls to this method to different processors, thus distributing associated workload
over available computation units. Depending on actual size of the two sublists irregular
computational effort can occur.

In case of matrix multiplication (as an example for data decomposition), parallelism lies
in the concurrent computation of elements of the result vector/matrix. Thus, parallelization
breaks down to partitioning loop ranges and distributing sub-ranges over participating
processors (loop parallelization). For sparse matrices with an unstructured sparsity pattern
(e.g. found in simulation applications) a high degree of irregularity results.

State space search is a typical example for explorative decomposition. Parallel execution is
achieved by distributing open nodes of an agenda over participating processors. Thus, every
processor maintains its own agenda and executes the algorithm presented in Listing 3. As
explained above, optimization procedures like state space search often generate additional
knowledge (e.g. bounds in a branch-and-bound method) during execution, which can greatly

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 7

advance the optimization process. In a distributed parallel environment this knowledge is
generated at different locations, requiring its explicit exchange between processors to increase
overall efficiency. State space search can exhibit a high degree of irregularity since it is in
general not possible to estimate the costs for traversing a specific region of the state space
graph.

3.1.3. Components

We assume the availability of suitable, pre-existing components addressing non-trivial
crosscutting concerns like load balancing or fault tolerance. (In this case, effort for
re-implementing corresponding functionality outweighs effort for assembly with existing
components.) We assemble parallel versions of our example applications using the components
described subsequently. However, our assumptions on specific functionality to be provided
are general such that other libraries or custom components could be employed as well.
Moreover, the assembly techniques presented in this work can be employed for arbitrary
parallelization and (in general) assembly scenarios. Thus, specifics of the described interfaces
or implementation details in general are only detailed to be able to concisely illustrate the
different assembly issues.

Before we describe the components we employ, we first define how the term component
is used in conventional component-based software engineering and how this relates to the
concept component in our context. In [12], a component is described as a building block of
a computer program that conforms to a component model. Component models define how to
assemble components (composition standard) and provide an infrastructure offering commonly
required mechanisms like persistence, security, or communication. When complying with the
composition standard, components can be composed without modification.

In our setting, we presume no constraints on assembly imposed by a component model
or composition standard. Thus, arbitrary (object-oriented) software artifacts as lightweight
components can be assembled for the desired deployment scenario. (We use the term assembly
in contrast to composition, as we explicitly presuppose no composition standard.) Initially,
all components, application or platform components, are implemented fully self-contained.
That means no implementation or compilation dependencies between any two of them impair
concurrent development.

This is crucial, when acting under the assumptions made in Section 1. On the one hand,
different components constituting a final program may have been developed by independent
parties. (Even single platform components may be procured from varying sources.) On the
other hand, the sequential application will determine in most cases the execution context.
This holds especially for subsequent parallelization of pre-existing, already deployed programs.
In this case, only lightweight components as described above will be suitable—in contrast to
(heavyweight) components presupposing (e.g.) dedicated application servers.

Load Balancing. We assume very generic load balancing functionality realized by the
following concepts. The balancing component monitors the instantiation and handling of
dynamically created content (workload), which is to be distributed dynamically. Components
requiring this functionality must call methods of the interface shown in Listing 4.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

8 C. DANGELMAYR AND W. BLOCHINGER

interface Balancer {
void n o t i f y I n s t an t i a t i o n (Object w) ;
void not i fyHand l ing (Object w) ;

}

Listing 4. Interface: Balancer.

By observing relevant changes, an attribute (like the workload status) is computed. A
constraint on this attribute is reviewed regularly. If it applies, the balancing component
chooses a neighbor from the set of known processors. Balancing actions are then realized
through exchanging content between the local processor and this neighbor. To manipulate
the local status the balancing component uses dedicated methods of the callback interface
BalancerCallback (compare Listing 5). Every processor must supply an implementation of
this interface to the balancing component.

interface BalancerCal lback {
void i n j e c t (Object w) ;
void ex t r a c t (Object w) ;

}

Listing 5. Interface: Balancer Callback.

Fault Tolerance. In this context, fault tolerance is restricted to losses of remotely handled
workload. The corresponding component creates local copies whenever a task is delegated to
other processors. An example for a delegated task is the remote traversal of a sub-tree in state
space search, whose root node has been transferred by the balancing component. When fault
detection signalizes that a processor went off-line which previously received workload, the local
copy of the task is re-instantiated on the processor it originally was extracted from.

Termination Detection. Another concern to be addressed in our context is detection of the
termination of a parallel computation, i.e. every created task has been executed. An explicit
termination detection protocol is required, since every processor in the system can dynamically
create new tasks without central control. Here, the corresponding component uses a fixed-
energy-based approach [22]. This approach to termination detection uses the notion of a fixed
quantity within the system, often termed ”energy”. When the parallel computation starts,
processor P0 has a single task representing the whole problem and is associated with an energy
of 1. When dynamic problem decomposition is carried out, processor P0 keeps one half of the
energy and gives the other half to the processor receiving the corresponding task, such that
each of the two processors has an energy of 0.5. This principle is applied every time when the
work of a processor is partitioned. When a processor completes its task, it returns its current
energy to the processor from which it received the work where it is added to the current energy.
Termination of the parallel computation can be determined when processor P0 has no more
work and its energy becomes 1.

Distribution. Crosscutting concerns addressed so far require functionality to coordinate
concurrent control flows on different processors. Technically this can be realized by a remote
procedure call abstraction. We assume that the parallel platform provides (asynchronous)

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 9

Figure 2. Monitoring Node Insertion/Extraction.

remote procedure calls in various manifestations like uni-, multi-, or broadcasts. Besides that,
this component provides commonly required functionality to realize distributed data structures
or shared objects.

3.2. Aspect-Oriented Component Assembly

This section describes different assembly issues and how aspect-oriented programming can be
employed to address these issues appropriately. We illustrate the application of each of these
techniques in the light of one of our example applications. Our discussion of the different
assembly techniques adheres to the following structuring:

1. We describe specific requirements for assembly.
2. We introduce the relevant aspect-oriented concepts and techniques.
3. We show how to apply these constructs to address the requirements.

We close with a summary and discussion of the employed techniques in Section 3.2.7.

3.2.1. Monitoring of Internal State with after-Advice

As mentioned, parallelization of state space search can be achieved by dynamic balancing
of open nodes of the agendas. Thus, the balancing component must be kept up-to-date on
relevant changes, i.e. local instantiation or handling of workload. When such an event takes
place, observing methods of implementations of the balancer interface must be called. For
example, we assume workload as instantiated with the insertion of nodes into the agenda.
Thus, we must forward corresponding events to the balancing component. This is illustrated
in Figure 2 for instantiation as well as handling of workload. Similarly, the fault tolerance
and termination detection components must be informed about workload being transferred
between different processors.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

10 C. DANGELMAYR AND W. BLOCHINGER

Aspect-Oriented Concepts and Constructs. The basic construct in aspect-oriented
programming are join points which are well-defined points in the control flow, e.g. method
calls, accesses to fields, or handling of exceptions. In the light of the drawbacks of imperative
programming paradigms discussed previously (see Section 2), this concept becomes of primary
interest because at join points additional code can be inserted. In the example for state
space search (see Listing 3), relevant join points are calls to the methods append and
extract of the agenda. Pointcuts allow the abstract declaration of sets of join points. To
state pointcuts, AspectJ offers a sophisticated template language. Pointcuts can include
calls to methods complying with a specified signature. An example for a pointcut is
call(void Agenda+.append(Node))which intercepts calls to the method append of all classes
implementing the Agenda interface. To pointcuts advices can be applied. Advices consist of
instruction sequences using reflexive information about the joined execution point to direct
their control flow.

Application. Listing 6 shows advice applied to pointcuts forwarding control flow to the
balancer interface.

after (Node n) : ca l l (void Agenda+.append (Node)) && args (n) {
ba lance r . n o t i f y I n s t an t i a t i o n (n) ;

}
after () returning (Node n) : ca l l (Node Agenda+. ex t r a c t ()) {

ba lancer . not i fyHand l ing (n) ;
}

Listing 6. Pointcut/Advice: Intercepting Node Insertion and Extraction.

The balancing component is now notified about the insertion of nodes into and extraction
of nodes from the monitored agenda. Fault tolerance and termination detection components
use similar pointcuts and advice to observe when nodes are transferred to other processors.

3.2.2. Manipulating Internal State with Introductions

As the balancing component requires a suitable callback interface (BalancerCallback), an
adapter (see adapter pattern [19]) to the local agenda must be interconnected. In general,
components must be able to manipulate internal state in other components. Thus, additional
assembly code is required to make necessary adaptations between involved components.

Aspect-Oriented Concepts and Constructs. Here, introductions [33] come into play.
Introductions statically extend the signature of classes by adding fields or methods, introducing
implemented interfaces, or modifying inheritance structures. As the visibility scopes of Java
apply to aspects as well, private fields of modified classes are not accessible from introduced
methods. This condition can be relaxed by using privileged aspects.

Application. We enrich the signature of classes implementing the interface Agenda (in our
case we employ the class Stack to realize a depth-first-search [22]) by the methods of the

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 11

interface BalancerCallback. These allow modifying the set of open nodes, referenced by the
private field nodes in Listing 7.

privileged aspect BalancingCallbackAdapter {
declare parents : Stack implements BalancerCal lback ;
void Stack . i n j e c t (Object w) { nodes . add(w) ; }
void Stack . ex t r a c t (Object w) { nodes . remove (w) ; }

}

Listing 7. Privileged Aspect: Balancing Callback Adapter.

3.2.3. Decoupling Components with Bridge Templates

We have shown in Listing 6 how to connect different components without having to modify
them. Subsequently, we discuss an approach to decouple components and to be able to easily
connect other applications or, in general, core concerns to the platform components.

Aspect-Oriented Concepts and Constructs. AspectJ allows deferring the specification of
pointcuts by permitting them to be separately stated, named, or even declared abstract (similar
to abstract methods and classes in conventional Java). They act as placeholders for concrete
pointcuts to be instantiated later. The same applies to aspects, the main representation
of a compilation unit in AspectJ. An aspect is a language construct that represents the
encapsulation of a number of code elements, like pointcuts or advices.

Our definition of the concept aspect is based on [33]. Here, an aspect is described as the
modular implementation of the client-part of a crosscutting concern. (The term client or client-
part is not to be confused with its common meaning in client-server-computing.) In this
context, one distinguishes between code actually crosscutting other concerns (modularized
as client-part) and the conventionally implemented server-part. This allows a modular and
reusable implementation of the server-part of the concern, while only the client-part has to
be changed when adapting to a new environment. In our case, server-parts are pre-existing,
object-oriented platform components.

Application. To connect components we interpose aspect-oriented bridges (see bridge pattern
[19]) between them. Bridges allow further decoupling components by mediating control flow.
The bridge, together with the code connecting related components, represents the client-part of
another component acting as server. Assembling components then requires connecting client as
well as server components (server-part) to the bridge. While an object-oriented implementation
may be sufficient for connecting the server-part (in most cases this would be an adapter),
connecting the client to the bridge in a non-intrusive fashion entails the full bandwidth of
aspect-oriented tools.

To allow applications to use the services of the balancing component, the client-part contains
abstract pointcuts (as elements of the respective bridge template, see template pattern [19]).
Connecting the client component to the bridge then requires to instantiate these pointcuts.
Both, together with their respective advice, are shown in Listing 8, representing the bridge
template.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

12 C. DANGELMAYR AND W. BLOCHINGER

Figure 3. Component Bridge connecting Client- and Server-Part.

abstract aspect BalancingBridgeTemplate {
abstract pointcut i n s t a n t i a t i o n (Object w) ;
abstract pointcut handl ing (Object w) ;
after (Object w) : i n s t a n t i a t i o n (w) {

ba lance r . n o t i f y I n s t an t i a t i o n (w) ;
}
after (Object w) : handl ing (w) {

ba lancer . not i fyHand l ing (w) ;
}

}

Listing 8. Aspect Template: Balancing Bridge.

To integrate the balancing component with a distributed application, one must instantiate
both pointcuts. This allows the balancing component to observe changes to the local workload
status and to take necessary balancing actions. Figure 3 illustrates how all discussed techniques
work together. In general, a number of equivalent pointcuts can be used to inject the same
crosscutting functionality. For workload instantiation/handling we intercept instantiations of
classes implementing the interface Node and calls to the method visit—as alternatives to
intercepting Agenda+.append/Agenda+.extract.

3.2.4. Integrating Low-Level Functionality with Annotation Introduction

As outlined in Section 3.1.2 advanced state space search algorithms often generate additional
heuristic knowledge which must be exchanged between processors to increase efficiency. Thus,
tools are required which allow to tag the specific execution points where this heuristic content is
generated such that new heuristic information can be broadcast upon encounter. Tagging such
execution points is a special case of a common requirement in the creation of complex systems:
integrating low-level concerns like logging, persistence, or security. This can be accomplished
using annotations. Section 3.2.7further discusses the benefits of annotation-based approaches.

Aspect-Oriented Concepts and Constructs. In Section 3.2.2, we discussed the use of
introductions. Besides allowing to insert new fields and methods, they enable us to attach
annotations. Calls to methods tagged this way can then be intercepted by pointcuts
incorporating these annotations.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 13

Figure 4. Parallel Quicksort. Local Method Calls are Highlighted.

Application. We illustrate the use of annotating join points on the example of propagating
heuristic information—as an element of the client-part of the communication component. To
declare method calls to be propagated, we attach annotations to dedicated methods. For our
traveling salesperson example these are the methods setting newly found bounds (as specified
in Listing 9).

declare @method : void Bound . setValue (double) : @Distr ibute ;

Listing 9. Attached Annotation: Tagging Heuristic Knowledge.

Propagating these method calls is then realized with after-advice (as illustrated in Listing
10).

abstract aspect Heur i s t i cKnowledgeDis t r ibu t ion {
abstract void propagate (RPC rpc) ;
after () : ca l l (@Distr ibute ∗ ∗ (. .)) {

propagate (new RPC(thisJoinPoint)) ;
}

}

Listing 10. Aspect Template: Heuristic Knowledge Distribution.

3.2.5. Non-intrusive Adaptation of Component Functionality with around-Advice

Section 3.1.2 outlines how quicksort can be parallelized. Every processor executes the algorithm
in Listing 1. However, instead of executing all calls to sort, different processors execute
different subsets of all initiated calls. This is illustrated in Figure 4. In this version of parallel
quicksort, different processors are responsible for different sub-ranges of the total sorting range
(determined by subsequent choices of pivot elements). Thus, a non-intrusive technique which
allows intercepting and possibly circumventing the execution of selected method calls is needed.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

14 C. DANGELMAYR AND W. BLOCHINGER

Figure 5. Favorable vs. Unfavorable Problem Configuration.

Aspect-Oriented Concepts and Constructs. Aspect-orientation allows us to non-intrusively
redirect the inner control flow of arbitrary components. Here, we use the around -advice
construct, which is able to intercept and circumvent the execution of selected statements.
(In contrast to after-advice, around-advice is executed instead of the intercepted join point
and not after it.)

Application. Listing 11 shows an aspect template intercepting and circumventing calls to
dedicated methods. Methods tagged with @Task are intercepted. The corresponding join point
is then mapped to a processor. Only if this processor equals the local processor, the method
call is executed with proceed().

abstract aspect TaskDisposit ionTemplate {
abstract Proces sor mapToProcessor (JoinPoint jo inPo in t) ;
void around () : ca l l (@Task ∗ ∗ (. .)) {

i f (mapToProcessor (thisJoinPoint) . equa l s (l o c a lP r o c e s s o r))
proceed () ;

}
}

Listing 11. Aspect Template: Task Disposition.

To instantiate this template, we tag sort(Range) and let mapToProcessor implement the
mapping function illustrated in Figure 4. Now, every processor executes the same algorithm
but only a subset of all initiated calls to sort.

With the problem configuration illustrated in Figure 4, workload is distributed equally over
participating processors. In general, workload balance between processors depends upon the
subsequent selection of pivot elements. This is illustrated in Figure 5 for different problem
configurations. Thus, in general, dynamic load balancing becomes additionally necessary.
Prematurely idle processors request unsorted sub-ranges, corresponding to calls to sort, from
non-idling processors. Here, Range objects represent exchangeable content (compare Section
3.2.3). By implementing BalancerCallback, we incorporate the delegation of sub-ranges into
processor mapping, superposing the application-specific part illustrated in Figure 4.

The application range of the around-advice construct is extremely wide, as it can be applied
on every level (e.g. to intercept a high-level method) and is able to redirect the control flow of
arbitrary software elements. Even a non-intrusive adaptation of the parallel platform, e.g. to
cope with unreliability is possible as we discuss subsequently.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 15

Tackling Unreliability with Non-intrusive Behavior Adaptation. In some cases the
functionality of one or more of the available components may be inadequate for a specific
application or deployment scenario. Thus, an adaptation of the inner behavior of components
becomes necessary. A typical example is dealing with high unreliability, e.g. prevailing in large,
loosely coupled distributed systems where participating processors frequently join and leave.
Often, unreliability cannot be tackled efficiently in a fully generic way, such that application
specific measures become mandatory.

In addition to generic fault tolerance measures (see Section 3.1.3), eager scheduling [36]
can be an efficient way to tackle high probability of losses of tasks. The basic principle is
to dynamically assign a task which is already scheduled (but yet uncompleted) to additional
processors when its result is not delivered within a given time frame. To introduce this sub-
aspect into the parallel platform, we intercept the lookup method for candidates for remote
handling of the balancer component and add already distributed tasks to the list of potential
candidates for remote execution (as illustrated in Listing 12).

abstract aspect EagerSchedulingTemplate {
abstract pointcut workload () ;
abstract Co l l e c t i on getDelegatedTasks () ;
Co l l e c t i on around () : workload () {

Co l l e c t i on cand idate s = new LinkedList (proceed ()) ;
cand idat e s . addAll (getDelegatedTasks ()) ;
return cand idat e s ;

}
}

Listing 12. Aspect Template: Eager Scheduling.

While the method getDelegatedTasks retrieves tasks which are already scheduled, the
abstract pointcut workload is used to intercept access to objects qualifying as candidates for
workload exchange. In Listing 13, we instantiate the originally abstract pointcut to intercept
read access to the field load of the LoadBalancer object.

pointcut workload () : get (Co l l e c t i on LoadBalancer . load)
&& withincode (void LoadBalancer . s e l e c tConten t ()) ;

Listing 13. Instantiated Pointcut: Workload Access.

In highly volatile settings, processors going off-line should also try to minimize lost workload
by sending back partially handled workload. In our state space search example, partially
handled workload is constituted by unvisited nodes of a sub-tree, either still in the agenda
or present as reference on another node. Here, the introduced recovery aspect requires to
instantiate an abstract pointcut, whose advice collects these findings and sends them to their
appropriate receivers. The employed parallel platform must contain join points qualifying for
an instantiation of this abstract pointcut which are e.g. join points indicating an upcoming
shutdown of the processor.

In addition, the technique can be used to realize specific routing functionality to compensate
the lack of direct communication channels. Here, we intercept the sending of messages in
analogous manner. When the target processor of a message is not visible, the message is

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

16 C. DANGELMAYR AND W. BLOCHINGER

encapsulated in a special routing message, which is sent to a currently visible, randomly chosen
processor. When this routing message arrives at the remote processor, it passes the original
message to the communication subsystem. Re-routing is repeated until the message is finally
delivered or a termination criterion applies.

3.2.6. Restructuring Control Flow with loop-Pointcuts

Data decomposition requires partitioning data sets into disjunctive subsets, which can be
handled in parallel. In most cases, this means partitioning control flow structured by for-
loops. In our matrix multiplication example as implemented in Listing 2 different iterations of
the loop compute different elements of the result matrix/vector. Thus, we subdivide the loop
range into partitions processed by different processors.

Aspect-Oriented Concepts and Constructs. Aspect-oriented programming with AspectJ
unfortunately still lacks the possibility to intercept single loop iterations on a structural level.
In [26], the authors deal with this shortcoming. A loop-Pointcut is presented addressing this
issue. However, in order to ensure broad applicability we restrict our approach to the common
standards Java and AspectJ. Thus, we inject parallelism on a lower level and use around-Advice
on workload-intensive parts of the loop body (similarly to constraining method execution as
described in Section 3.2.5).

Application. An aspect template similar to the one shown in Listing 11 is used to intercept
parts of the loop body. For parallel matrix multiplication, we attach @Task to methods
multiplying matrices with vectors (Matrix.multiply(Vector) in Listing 2), thus computing
single rows of the result matrix. For method calls which are not executed the around-
advice returns a proxy object. A generic implementation is employed for processor mapping
(illustrated in Listing 14): every processor executes only every n-th method call (assuming n
processors) starting with an offset represented by its index in an ordering over all processors.

int index = 0 ;
Proces sor mapToProcessor (JoinPoint jo inPo in t) {

return p ro c e s s o r s . get (index++ % proc e s s o r s . s i z e ()) ;
}

Listing 14. Instantiated Method: Generic Processor Mapping.

As we focus on irregularly distributed workload, we additionally use dynamic load balancing
to distribute remaining method calls over idle processors. Here, matrix-vector-multiplications
are handled as first-class-objects, implementing the command pattern [19].

3.2.7. Summary and Discussion

In the previous sections, we showed how aspect-oriented programming allows us to assemble
all components without having to modify them. As our techniques require introspection of
components, it is basically a glass-box approach [21]. In this section, we briefly recapitulate

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 17

our use of the different aspect-oriented techniques, classifying them into dynamic and static
crosscutting [31].

Dynamic Crosscutting. We use after -advice to non-intrusively inject internal state monitoring
between components (compare Section 3.2.1). This forwarding of control comes always into
play, when changes to an object must be passed on to structures dependent on this object.
As opposed to after-advice, around -advice can be used to intercept and circumvent arbitrary
method calls. Section 3.2.5 shows how to employ this construct to non-intrusively redirect the
inner control flow of arbitrary components.

To further decouple components, advice is incorporated into bridge templates (see Section
3.2.3). These are implemented using abstract aspects and abstract pointcuts. This approach
decouples components and facilitates connecting varying implementations. By replacing the
server-adapter, other platform components can be integrated. Just as new instantiations of
the bridge template can integrate crosscutting functionality into different applications.

Static Crosscutting. In Section 3.2.2, we showed how to allow components to manipulate
internal state of other components. Here, we used introductions to provide for an adapter
implementing a callback interface with corresponding get/set methods. As this adapter accesses
private object state, we use a privileged aspect.

With introductions, we are not only able to introduce additional methods or fields, but also
to attach annotations to methods. In Section 3.2.4, we showed how to tag low-level crosscutting
functionality this way. The main advantage of this approach is conciseness, since assembly code
is here restricted to annotation introductions. These can be arranged arbitrarily, allowing for
more freedom in decomposition and also enhance readability. Especially, this approach turns
out to be effective for low-level functionality, where no parameter binding is required and many
join points are intercepted.

3.3. Aspect-Oriented vs. Object-Oriented Component Assembly

In this section we compare aspect-oriented and object-oriented approaches to component
assembly in a qualitative manner. (A quantitative analysis is presented in Section 4.) In
contrast to object-oriented programming, we do not have to impose artificial structures on
our design, but can use appropriate and especially designed techniques and tools. We will
see that with conventional object-oriented programming, one could at best fall back to the
usual design patterns [19], to which these aspect-oriented techniques correspond to, while still
having to manipulate and adapt the original code. Prime example for this is the conventional
implementation of the observer pattern in comparison to the use of after -advice. Before
discussing the different assembly issues, we describe how object-oriented programming prevents
component immutability in component-based systems.

Component Immutability. Inter-component communication in object-oriented component
systems is traditionally restricted to interfaces (or ports), that are established when the
components were implemented. Unfortunately, this seriously impairs subsequent integration
of crosscutting concerns. If the constraint on the immutability of components holds (compare

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

18 C. DANGELMAYR AND W. BLOCHINGER

Section 3.1.3), the number of crosscutting concerns, that can be integrated, is considerably
reduced. Basically these are limited to crosscutting concerns anticipated with appropriate hooks
during the implementation of the component. Thus, to subsequently integrate non-anticipated
crosscutting concerns we have to employ a white-box-approach [21] with component mutability.

Monitoring of Internal State. To implement internal state monitoring, one would use the
observer pattern [19]. This implies the modification of all classes where corresponding events
occur, as these must now publish relevant status changes to observers. Besides having to change
the original implementation, this can hardly be considered a native approach. In addition, it
introduces redundancies, which are known to be error-prone. Furthermore, it reduces code
quality as intrusive assembly impairs separation of concerns.

Manipulating Internal State. To allow for the manipulation of internal component state,
referenced by fields of constituting classes, one would use the adapter pattern [19]. However, if
the corresponding fields are declared private and no suitable set/get methods are available,
there is no possibility to access them without changing the original code. With aspect-oriented
programming, however, we can separately specify appropriate adapters in aspects, preserving
the original implementation and full reusability of accessed components.

Although, when using a privileged aspect, the aspect-oriented approach softens
the information hiding principle of object-oriented programming, this is crucial, as
Java’s implementation of this principle is partially incompatible with multi-dimensional
decomposition (see discussion on dominant decomposition in Section 2). For a non-intrusive
adapter in object-oriented programming one would have to employ reflection (e.g. provided
by the java.lang.reflect package [28]). However, reflection is a low-level technique outside
the language scope and impacts performance considerably.

Decoupling Components. To decouple components, we interconnect bridges (based on bridge
templates) between components. Applying aspect-orientation enables us to keep the code of
all assembled components untouched, even when actual crosscutting is required. All additional
functionality can be coherently encapsulated in aspects, defined in their respective compilation
units. Although the server-adapter may be used in a pure object-oriented approach as well,
installing a bridge between both components would still require intrusive modification of the
crosscut code.

Integrating Low-Level Functionality. Pure Java allows also tagging low-level functionality
with annotations. However, it does not permit to explicitly state where to insert them.
Furthermore, to process this information we would have to use a form of reflection (see above).

Adaptation of Functionality. As mentioned, the concrete deployment scenario sometimes
requires adaptation of inner control flow of components. The advantage of employing aspect-
oriented programming is that instead of having to change the original implementation of
components and probably impairing their usability or efficiency for other deployment scenarios,
we can simply plug-in lightweight modifications if needed, while still being able to maintain
and advance the original, generic component.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 19

Especially in this case an object-oriented approach would seriously impair the code quality of
involved components, probably up to the point where a complete re-design would be favorable
over the adaptation of existing components. A common approach in object-orientation is to
extract and encapsulate insufficient functionality in strategy-objects (see strategy pattern [19]),
allowing for their substitution with better suiting ones.

4. Quantitative Analysis

In this section, we compare the discussed aspect-oriented and the object-oriented approach to
component assembly quantitatively. We assemble parallel programs consisting of the different
sequential applications described in Section 3.1.1 and the platform components described in
Section 3.1.3. (As all exemplary applications feature a high degree of irregularity, dynamic
load balancing is required in all cases, as well as fault tolerance and termination detection).
We measure code quality metrics like cohesion or coupling where appropriate. Additionally,
we conduct performance measurements for both approaches.

We ensure comparability by using a direct and bijective mapping of aspect-oriented to
object-oriented code, resulting in appropriate assembly issue/design pattern implementations
for both cases. Specifically, we convert AspectJ aspects to Java classes by mapping advice to
methods, which in turn are called from the join points the associated pointcut intercepts. For
example, the object-oriented pendant of after -Advice applied to the execution of a certain
method (after() : execution(..) {..}) consists of a call to the respective method (of the
converted aspect) at the bottom of the intercepted method. The same applies for introduced
methods.

4.1. Code Quality

In [43], the authors present an assessment framework for comparing aspect- to object-oriented
implementations (also compare [23, 32, 20]). Our selection of code quality metrics is based
on this framework. In this paper, however, we focus on assembly assuming a pre-existing
code base shared by aspect- as well as object-oriented implementations. Thus, in most cases
derivatives of the different metrics are more meaningful than the original metrics. For example,
we use the difference operator ∆ to highlight the influence of the assembly approach on
component code quality. In addition, for some of the computed metrics we constrain our
analysis on classes constituting the original components. In these cases, the corresponding
pure object-oriented code metrics are used. Furthermore, as we study code quality in a
component-based approach (assembling application and platform components), we additionally
show corresponding metrics with components as the primary unit of decomposition. Here,
interdependencies between components are analyzed and not between single compilation units.

Separation of Concerns. Such metrics measure how well code fragments implementing a
certain concern are kept together. Concern Diffusion over Components (CDC, Table I)
counts the number of components contributing to the implementation of a certain concern.
A component contributes to the implementation of a concern if its primary purpose is the

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

20 C. DANGELMAYR AND W. BLOCHINGER

implementation of the concern (primary component) or one of its constituting classes accesses
a class of a primary component within attribute declarations or method calls.

Besides diffusion over components, we look at Concern Diffusion over Object Classes (CDO).
Before assembly, CDO for a certain concern equals the number of classes constituting the
corresponding component. After assembly, classes from other components may additionally
contribute (as defined above) to the concern, thus increasing concern diffusion. Table I shows
corresponding difference values ∆CDO. Both metrics (CDC as well as ∆CDO) show how
object-oriented programming inevitably intermingles different concerns (tangling) and splits up
code sequences essentially belonging together (scattering). With aspect-oriented programming,
we can prevent concern diffusion and preserve separation of concerns.

In addition, we look at how concern fragments disperse over all components as an indication
for code locality. Table II shows Concern Dispersion over Components (measured in lines of
code) as an average of all exemplary applications. Again, this demonstrates the unfavorable
dispersion of concern code resulting from intrusive assembly.

Coupling. Coupling reflects how classes (or components) depend on each other, especially it
shows whether changes in one have effect on the implementation of others. Coupling Between
Object Classes (CBO) [9] for example counts the number of classes a certain class is coupled
to. A class is coupled to another class, if it calls a method of this class or instantiates the class.
Table I shows corresponding difference values. These are computed over average coupling
values—denoted with ⟨CBO⟩—for the classes constituting the original component. Averages
are computed by weighing classes with lines of code.

Coupling Between Components (CBC, Table I) applies the same principle to components.
A component is coupled to another component if one of its constituting classes is coupled
to a class from this other component. Figures for CBC as well as for ∆⟨CBO⟩ show how
intrusive assembly induces unnecessary coupling between involved components and compilation
dependencies specific for the actual deployment scenario.

Cohesion. Cohesion looks at how different elements of a class relate to each other. If cohesion
is low, the respective class should probably be refactored into multiple ones. Metrics like
Lack of Cohesion of Methods (LCOM) [9] or its derivate LCOM∗ (for details see [27])
count methods operating on disjunctive data sets. Table I shows ∆⟨LCOM∗⟩ for the original
component implementation—again applying the difference operator on weighed averages. This
demonstrates how in most cases intrusive assembly reduces class cohesion, impairing code
quality of the corresponding components.

Conciseness. To study the effects of assembly on the amount of generated code, we compute
a size metric as an indication for conciseness—denoted as ∆LOC/LOC in Table I. This metric
measures how much the code base increases with assembly. Primarily, we are interested in
whether one approach requires significantly more lines of code to assemble an equivalent
program than the other. Figures show that even though aspect-oriented programming
sometimes requires additional code to state pointcuts or to declare aspects it does not
necessarily reduce conciseness.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 21

Table I. Code Quality Metrics.

Core Load Fault Termination
Concern Balancing Tolerance Detection

Metric Appl. OOP AOP OOP AOP OOP AOP OOP AOP

CDC MM 1.00 1.00 3.00 1.00 2.00 1.00 3.00 1.00
QS 1.00 1.00 3.00 1.00 2.00 1.00 3.00 1.00
TSP 1.00 1.00 3.00 1.00 2.00 1.00 4.00 1.00

∆CDO MM 0.00 0.00 2.00 0.00 2.00 0.00 3.00 0.00
QS 0.00 0.00 2.00 0.00 2.00 0.00 3.00 0.00
TSP 0.00 0.00 4.00 0.00 1.00 0.00 3.00 0.00

CBC MM 1.00 0.00 2.00 0.00 2.00 0.00 0.00 0.00
QS 1.00 0.00 2.00 0.00 2.00 0.00 0.00 0.00
TSP 2.00 0.00 2.00 0.00 2.00 0.00 0.00 0.00

∆⟨CBO⟩ MM 0.83 0.00 1.43 0.00 1.69 0.00 0.00 0.00
QS 0.20 0.00 1.43 0.00 1.69 0.00 0.00 0.00
TSP 0.88 0.00 0.97 0.00 1.69 0.00 0.00 0.00

∆⟨LCOM∗⟩ MM 0.09 0.00 0.10 0.00 -0.02 0.00 0.00 0.00
QS 0.04 0.00 0.10 0.00 -0.02 0.00 0.00 0.00
TSP 0.07 0.00 0.05 0.00 -0.02 0.00 0.00 0.00

∆LOC/LOC MM 9.13 0.00 29.30 41.39 44.66 42.72 44.04 40.37
[%] QS 2.19 0.00 31.87 39.93 44.66 42.72 44.04 40.37

TSP 14.91 0.00 13.19 21.25 44.66 42.72 41.28 38.53

RCO MM 86.12 100.00 49.45 100.00 43.69 100.00 100.00 100.00
[%] QS 65.71 100.00 49.45 100.00 43.69 100.00 100.00 100.00

TSP 71.43 100.00 58.61 100.00 43.69 100.00 100.00 100.00

MM = Matrix Multiplication, QS = Quicksort, TSP = Traveling Salesperson Problem

Table II. Concern Dispersion over Components.

Application Load Fault Termination
Component Balancing Tolerance Detection

Concern OOP AOP OOP AOP OOP AOP OOP AOP

Core concern [%] 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Load Balancing [%] 7.03 0.00 90.16 100.00 2.81 0.00 0.00 0.00
Fault Tolerance [%] 0.00 0.00 6.36 0.00 93.64 100.00 0.00 0.00
Termination Detection [%] 2.53 0.00 10.99 0.00 3.06 0.00 83.42 100.00

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

22 C. DANGELMAYR AND W. BLOCHINGER

.
Table III. Parallel Performance.

ts [s] tp, n = 16 [s] Speedup Efficiency [%]

Application OOP AOP OOP AOP OOP AOP

Matrix Multiplication 4524 291 290 15.57 15.59 97.33 97.41
Quicksort 4450 320 318 13.90 13.98 86.86 87.41
State Space Search 4065 302 312 13.47 13.02 84.18 81.40

Reusability. As an index for reusability, we look at the percentage of reusable compilation
units (weighted with lines of code). Classes constituting components are only regarded reusable,
if they have not been modified during assembly. Table I shows figures for Reusability of
Component Object Classes (RCO). Especially this metric shows how crucial the assembly
paradigm is—as with object-oriented programming only a fraction of the original component
code base remains usable outside of the current assembly scenario.

4.2. Performance

Previously, we showed how code quality benefits from our aspect-oriented approach. However,
in parallel computing one must also take parallel performance and efficiency into account.
Thus, we additionally compare both approaches with regard to their parallel performance.

For our matrix multiplication example, we multiply randomly created sparse matrices.
As we apply a non-uniform distribution of non-zero elements, single result elements feature
irregular computational effort. Thus, dynamic load balancing becomes favorable. Our quicksort
procedure sorts large arrays of randomly created individuals in an evolutionary algorithm
[2]. These represent strategies in an iterated prisoner’s dilemma [4]. Two individuals are
compared by playing the game repeatedly against each other. This application of quicksort
features irregular distributed computational effort comparable to the other applications—
without having to use an external sort (in contrast to simply comparing real numbers). We are
thus able to concentrate on recursive parallelism. For our state space search example, we apply
branch-and-bound on randomly created traveling salesperson problem instances. Bounds are
communicated using the distribution component.

We conduct runtime measurements on a cluster computer with 16 Intel Xeon Dual 2,6 GHz
2 GB RAM, connected by a 1000 Mbps Ethernet network. Table III displays sequential and
parallel run-times as wells as the resulting speedup and efficiency values for our three example
applications. The results show on the one hand that the employed parallelization methods are
able to achieve good speedups regardless which assembly approach is employed. On the other
hand, we see that differences in parallel performance can be neglected — in contrast to code
quality, which significantly improves with aspect-oriented programming.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 23

5. Related Work

Several research efforts employ aspect-oriented programming to deal with parallelization issues.
[6, 48, 5, 7]. (In [7] aspect-orientation is used alongside with invasive software composition [3]).
In all approaches, crosscutting concerns (e.g. load balancing [6] or problem decomposition [48])
are implemented as straight-forward AspectJ-aspects from scratch. Aspect-oriented techniques
have also been applied to address parallelization or concurrency on a lower level. In [13] for
example, concurrency patterns and low-level concerns like synchronization issues are discussed.

Primarily, all these approaches aim at designing (reusable) aspect libraries. Although this is a
worthwhile and proven approach in aspect-oriented programming, our work especially considers
the fact that most often there already exist highly optimized sequential application code and
conventionally implemented components of a parallel platform addressing all functional and
non-functional requirements of parallelization.

In [25], the authors mine scientific code (Java Grande Forum benchmark suite [46, 47])
for join points qualifying to inject parallelization. Where not available, they show how to re-
factor the code to provide suitable join points. This mostly means introducing object-oriented
design into legacy imperative programs ported to Java (typical for this application suite), thus
increasing the applicability of AspectJ. In contrast to their research, we apply aspect-oriented
programming not only to connect application and platform components, but in general between
components in a component-based approach. In later research [26], a pointcut-model for loops
is presented. Especially this could prove a highly useful addition to our approach as for-loops
promise most intuitive parallelism (compare Section 3.2.6).

In Section 3.2, we enumerate recurring patterns in component assembly. For didactic
purposes and to be able to convert the approach between aspect-oriented programming
languages, these are mapped to corresponding Gang-of-Four (GoF) [19] design patterns. In [24],
the authors compare object- and aspect-oriented implementations of all GoF design patterns.
This qualitative analysis is complemented with a quantitative study in [20]. Additionally, we
show how to use these constructs to connect components in a component-based approach.
Thus, we connect software elements on a larger scale: from an object-oriented to a component-
based point of view, but with similar premises.

Component-Based Software Engineering. In application server research, application
integration and assembly is of primary interest. Here, mostly business-oriented services and
related concerns are addressed. Important trends are the incorporation of aspect-orientation
for low-level concerns like persistence or security (like in Spring [50] or JBoss AOP [29]) or
the use of annotations to add metadata, which is processed during deployment, like in the
EJB3 specification [17]. Here, parallelization is of less importance, because load is generated
by large numbers of independent clients and its balancing is mainly a question of replicating
infrastructure.

Besides primarily business-related approaches, component-based software engineering in
general starts to reckon aspect-oriented programming (for example [37, 39, 52, 16, 10, 44]).
Most research derives from the question how to align the black box property desired in
component-based software engineering with the inherent introspective nature of aspect-
oriented programming [39]. Models range from very restrictive approaches like JAsCo [52],

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

24 C. DANGELMAYR AND W. BLOCHINGER

where only public methods and events of Java Beans can be intercepted, to more open
approaches like JBoss AOP.

In general, sophisticated component models are presented incorporating aspect-oriented
programming to address typical crosscutting concerns. We study the component-based
approach outside of the scope of traditional component-based software engineering, neither
imposing component model nor composition standard on assembly. Instead, we simply assume
non-modifiable, reusable software artifacts whose implementation lies outside the scope of the
current assembly process. Primary quality of assembled artifacts is full reusability independent
of component model. Our focus lies on how this approach benefits separation of concerns in
parallelization and allows circumventing the negative effects of intrusive assembly on code
quality.

Meta-Programming. In cases where the range of aspect-oriented programming is too
restricted to handle a given problem in a consistent manner more generic approaches like
reflective program-transformation techniques (e.g. [8]) or meta-programming turned out to
be effective. In [38], template-based meta-programming is used to configure middleware
components based on annotations. During compilation, template processors read out these
annotations and modify the source code accordingly. Although, this work focuses on the
design of application servers, the approach taken could in principle also be used to inject
parallelization on the application level.

However, such aggressive transformation techniques also greatly reduce type safety and
implementation can thus become very error-prone. Moreover, the shift from classical object-
orientation to meta-programming is even more pronounced than to the proposed combination
of object-orientation and aspect-orientation, affecting issues like tool support and developer
training. Besides that, the approach of meta-programming seems to be highly interesting.
Especially for the task of behavior modification (see Section 3.2.5) this technique could be a
useful addition to the approach discussed in our paper.

Generative Programming. Generative programming tackles problems induced by dominant
decomposition (see Section 2) by introducing a higher level of abstraction into the development
process. On this level, recurring code fragments are defined and distributed over generated
programs. In parallelization, examples are generative parallel design patterns [53, 1] or
automatically generated parallel program skeletons [18, 49]. In [49], program skeletons are
generated for different parallel deployment scenarios, e.g. multi-core-systems or computational
grids. In [1], parallel structural code is generated from parameterizable pattern templates to
tackle the Cowichan problems [55]. In both cases, generated program templates are instantiated
by filling hooks (like abstract methods) with domain specific code.

If we assume a preexisting sequential code base and code quality is considered, one
disadvantage of the approach is, that the respective code has to be disassembled and fitted
into hook methods in-between protected regions. This violates component immutability and
reduces code quality (for example separation of concerns or cohesion). This deficiency can
be overcome when restricting generative programming to the parameterizable generation of
object-oriented components (as a legitimate alternative to the non-intrusive strategy pattern
described in Section 3.2.5).

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 25

6. Conclusion

Although aspect-orientation offers only a restricted set of constructs (compared with the
possibilities of generative or meta-programming), for the problem at hand, they proved to
be sufficient. They allow us to integrate existing application code with different crosscutting
concerns arising from parallelization, while leaving original sequential application code as well
as platform components untouched.

By combining elements from component-based software engineering and aspect-oriented
programming, we are able to address crosscutting concerns in a fully non-intrusive manner.
Components require neither infrastructure nor hooks for anticipated crosscutting functionality.
Our approach to component assembly ensures full reusability of all assembled software artifacts.
Code quality properties like separation of concerns, cohesion, and coupling significantly
improve with our approach. Additionally, these improvements do not come at the cost of
reduced performance.

The techniques discussed can, in principle, be employed for almost all assembly and
integration purposes. They allow to access and to replace arbitrary parts of existing code non-
intrusively in order to make necessary adaptations for assembly with existing components.
However, in the extreme case significant parts of the new program logic become part of
assembly code, complicating software re-use. Thus, in the case of parallelization, a necessary
precondition for sensibly applying our approach is that the existing sequential code is amenable
for parallelization and that the employed platform components basically provide the required
functionality.

7. Acknowledgement

Wolfgang Blochinger has been supported in part by the Ohio Supercomputer Center.

REFERENCES

1. Anvik J, Schaeffer J, Szafron D, Tan K. Asserting the utility of CO2P3S using the Cowichan Problem Set.
Journal of Parallel and Distributed Computing 2005; 65(12):1542–1557.

2. Ashlock D. Evolutionary Computation for Modeling and Optimization. Springer, 2006.
3. Aßmann U. Invasive Software Composition. Springer, 2003.
4. Axelrod R. The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In Genetic Algorithms and

Simulated Annealing. Morgan Kaufman: Los Altos, CA, 1987.
5. Bangalore PV. Generating Parallel Applications for Distributed Memory Systems using Aspects,

Components, and Patterns. In Proceedings of the 6th Workshop on Aspects, Components, and Patterns
for Infrastructure Software. ACM: New York, 2007.

6. Blochinger W, Dangelmayr C, Schulz S. Aspect-Oriented Parallel Discrete Optimization on the Cohesion
Desktop Grid Platform. In Proceedings of the 6th IEEE International Symposium on Cluster Computing
and the Grid. IEEE: Washington, DC, 2006.

7. Chalabine M, Kessler C. Crosscutting Concerns in Parallelization by Invasive Software Composition and
Aspect Weaving. In Proceedings of the 39th Hawaii International Conference on System Sciences. IEEE:
Washington, DC, 2006.

8. Chiba S. Load-Time Structural Reflection in Java. In Proceedings of the 14th European Conference on
Object-Oriented Programming. Springer: London, 2000.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

26 C. DANGELMAYR AND W. BLOCHINGER

9. Chidamber SR, Kemerer CF. A Metrics Suite for Object Oriented Design. IEEE Transactions on Software
Engineering 1994; 20(6):476–493.

10. Clemente PJ, Hernandez J, Sanchez F. Driving Component Composition from Early Stages Using Aspect-
Oriented Techniques. In Proceedings of the 40th Annual Hawaii International Conference on System
Sciences. IEEE: Washington, DC, 2007.

11. Constantinides CA, Bader A, Elrad TH, Fayad ME, Netinant P. Designing an Aspect-Oriented Framework
in an Object-Oriented Environment. ACM Computing Surveys 2000; 32(1):41.

12. Councill WT, Heineman GT. Component-Based Software Engineering. Addison-Wesley, 2001.
13. Cunha C, Sobral J, Monteiro M. Reusable Aspect-Oriented Implementations of Concurrency Patterns

and Mechanisms. In Proceedings of the 5th International Conference on Aspect-Oriented Software
Development. ACM: New York, 2006.

14. Dijkstra EW. A Discipline of Programming. Prentice-Hall, 1976.
15. Lämmel R, De Schutter K. What does Aspect-Oriented Programming mean to Cobol? In Proceedings of

the 4th International Conference on Aspect-Oriented Software Development. ACM: New York, 2005.
16. Lagaisse B, Joosen W. Component-Based Open Middleware Supporting Aspect-Oriented Software

Composition. In Component-Based Software Engineering. Springer: Berlin, 2005.
17. JSR-000220 Enterprise JavaBeans 3.0.

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html [last accessed Aug 8, 2007]
18. Ferreira JF, Sobral JL, Proenca AJ. JaSkel: A Java Skeleton-Based Framework for Structured Cluster and

Grid Computing. In Proceedings of the 6th IEEE International Symposium on Cluster Computing and
the Grid. IEEE: Washington, DC, 2006.

19. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

20. Garcia A, Sant’Anna C, Figueiredo E, Kulesza U, Lucena C, von Staa A. Modularizing Design Patterns
with Aspects: A Quantitative Study. In Proceedings of the 4th International Conference on Aspect-
Oriented Software Development. ACM: New York, 2005.

21. Gill NS. Reusability Issues in Component-based Development. ACM SIGSOFT Software Engineering
Notes 2003; 28(6):30.

22. Grama A, Gupta A, Karypis G, Kumar V. Introduction to Parallel Computing (2nd edn). Addison-Wesley,
2003.

23. Greenwood P, Garcia A, Rashid A, Figueiredo E, Sant’Anna C, Cacho N, Sampaio A, Soares S, Borba P,
Dosea M, Ramos R, Kulesza U, Bartolomei T, Pinto M, Fuentes L, Gamez N, Moreira A, Araujo J, Batista
T, Medeiros A, Dantas F, Fernandes L, Wloka J, Chavez C, France R, Brito I. On the Contributions of an
End-to-End AOSD Testbed. In EARLYASPECTS ’07: Proceedings of the Early Aspects at ICSE. IEEE:
Washington, DC, 2007.

24. Hannemann J, Kiczales G. Design Pattern Implementation in Java and AspectJ. ACM SIGPLAN Notices
2002; 37(11):161–173.

25. Harbulot B, Gurd JR. Using AspectJ to Separate Concerns in Parallel Scientific Java Code. In Proceedings
of the 3rd International Conference on Aspect-Oriented Software Development. ACM: New York, 2004.

26. Harbulot B, Gurd JR. A Join Point for Loops in AspectJ. In Proceedings of the 5th International
Conference on Aspect-Oriented Software Development. ACM: New York, 2006.

27. Henderson-Sellers B. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, 1996
28. Java Reflection API: java.lang.reflect (Java Platform SE 6).

http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html [last accessed Sep 23,
2007]

29. JBoss AOP.
http://labs.jboss.com/jbossaop [last accessed Aug 8, 2007]

30. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W. An Overview of AspectJ. In
Proceedings of the 15th European Conference on Object-Oriented Programming. Springer: London, UK,
2001.

31. Kiczales G, Lamping J, Mendhekar A, Maeda C, Videira Lopes C, Loingtier JM, Irwin J. Aspect-
Oriented Programming. In Proceedings of the 11th European Conference on Object-Oriented Programming.
Springer: Berlin, 1997.

32. Kulesza U, Sant’Anna C, Garcia A, Coelho R, von Staa A, Lucena C. Quantifying the Effects of Aspect-
Oriented Programming: A Maintenance Study. In Proceedings of the 22nd IEEE International Conference
on Software Maintenance. IEEE: Washington, DC, 2006.

33. Laddad R. AspectJ in Action: Practical Aspect-Oriented Programming. Manning, 2003.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

ASPECT-ORIENTED COMPONENT ASSEMBLY FOR PARALLELIZATION 27

34. Lieberherr K, Orleans D, Ovlinger J. Aspect-Oriented Programming with Adaptive Methods.
Communications of the ACM 2001; 44(10):39–41.

35. McMenamin SM, Palmer JF. Essential Systems Analysis. Yourdon, 1984.
36. Neary M, Cappello P. Advanced Eager Scheduling for Java-based Adaptively Parallel Computing. In

Proceedings of the 2002 Joint ACM-ISCOPE Conference on Java Grande. ACM: New York, 2002.
37. Pawlak R, Seinturier L, Duchien L, Florin G, Legond-Aubry F, Martelli L. JAC: An Aspect-Based

Distributed Dynamic Framework. Software—Practice and Experience 2004; 34(12):1119–1148.
38. Pawlak R. Spoon: Compile-time Annotation Processing for Middleware. In IEEE Distributed Systems

Online 2006; 7(11).
39. Pessemier N, Seinturier L, Coupaye T, Duchien L. A Safe Aspect-Oriented Programming Support for

Component-Oriented Programming. In Proceedings of the 11th International ECOOP Workshop on
Component-Oriented Programming. Karlsruhe University, 2006.

40. Rashid A, Sawyer P, Moreira A, Araujo J. Early Aspects: A Model for Aspect-Oriented Requirements
Engineering. In Proceedings of the 10th Anniversary IEEE Joint International Conference on
Requirements Engineering. IEEE: Washington, DC, 2002.

41. Rashid A, Chitchyan R. Persistence as an Aspect. In Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development. ACM: New York, 2003.

42. Sakurai K, Masuhara H, Ubayashi N, Matsuura S, Komiya S. Association Aspects. In Proceedings of the
3rd International Conference on Aspect-Oriented Software Development. ACM: New York, 2004.

43. Sant’Anna C, Garcia A, Chavez C, Lucena C, von Staa A. On the Reuse and Maintenance of Aspect-
Oriented Software: An Assessment Framework. In Proceedings of the 17th Brazilian Symposium on
Software Engineering. Manaus, Brazil, 2003.

44. Seinturier L, Pessemier N, Duchien L, Coupaye T. A Component Model Engineered with Components and
Aspects. In Component-Based Software Engineering. Springer: Berlin, 2006.

45. Shah V. Using Aspect-Oriented Programming for Addressing Security Concerns. In Proceedings of the
13th International Symposium on Software Reliability Engineering. IEEE: Washington, DC, 2002.

46. Smith LA, Bull JM. A Multithreaded Java Grande Benchmark Suite. In Proceedings of the 3rd Workshop
on Java for High Performance Computing. ACM: New York, 2001.

47. Smith LA, Bull JM, Obdrzalek J. A Parallel Java Grande Benchmark Suite. In Proceedings of ACM/IEEE
2001 Conference on Supercomputing. ACM: New York, 2001.

48. Sobral JL. Incrementally Developing Parallel Applications with AspectJ. In Proceedings of the 20th
International Parallel and Distributed Processing Symposium. IEEE: Washington, DC, 2006.

49. Sobral JL, Proena AJ. Enabling JaSkel Skeletons for Clusters and Computational Grids. In IEEE Cluster
(Cluster 2007). IEEE: Washington, DC, 2007.

50. Spring AOP: Aspect Oriented Programming with Spring.
http://www.springframework.org/docs/reference/aop.html [last accessed Aug 8, 2007]

51. Sommerville I, Sawyer P. Requirements Engineering: A Good Practice Guide. Wiley, 1997.
52. Suvée D, Vanderperren W, Jonckers V. JAsCo: An Aspect-Oriented Approach tailored for Component

Based Software Development. In Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development. ACM: New York, 2003.

53. Tan K, Szafron D, Schaeffer J, Anvik J, MacDonald S. Using Generative Design Patterns to Generate
Parallel Code for a Distributed Memory Environment. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM: New York, 2003.

54. Tarr PL, Ossher H, Harrison WH, Sutton Jr SM. N Degrees of Separation: Multi-Dimensional Separation
of Concerns. In Proceedings of the 21st International Conference on Software Engineering. IEEE: Los
Alamitos, CA, 1999.

55. Wilson GV. Assessing the Usability of Parallel Programming Systems: The Cowichan Problems. In
Proceedings of the IFIP Working Conference on Programming Environments for Massively Parallel
Distributed Systems. Birkhäuser: Basel, 1994.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

