Hochschule Reutlingen
Reutlingen University

g8

Parallel and Distributed Computing Group
Department of Computer Science
Reutlingen University

Physically based simulation of cloth on distributed
memory architectures

Bernhard Thomaszewski and Wolfgang Blochinger

(Accepted Peer-Reviewed Manuscript Version)

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

The formal publication is available at:
https://doi.org/10.1016/j.parco.2007.02.008

BIBTRX
@article{Thomaszewski2007,
author = "Bernhard Thomaszewski and Wolfgang Blochinger",
title = "Physically based simulation of cloth on distributed memory
architectures”,
journal = "Parallel Computing",
volume = "33",
number = "6",
pages = "377--390",
year = "2007",
issn = "0167-8191",
doi "https://doi.org/10.1016/j.parco.2007.02.008",

url "http://www.sciencedirect.com/science/article/pii/S0167819107000270"

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.parco.2007.02.008

Physically Based Simulation of Cloth on
Distributed Memory Architectures

Bernhard Thomaszewski?®, Wolfgang Blochinger "*

& WSI/GRIS,
b WSI/SR

University of Tiibingen, Wilhelm-Schickard-Institute, Sand 1/,
D-72076 Tiibingen, Germany

Abstract

Physically based simulation of cloth in virtual environments is a computationally
demanding problem. It involves modeling the internal material properties of the
textile (physical modeling) and also treating interactions with the surrounding scene
(collision handling).

In this paper, we present an approach to parallel cloth simulation designed for
distributed memory parallel architectures, particularly clusters built of commodity
components. We discuss parallel techniques for the physical modeling phase as well
as for the collision handling phase which are capable to significantly reduce the
respective computation times.

To deal with the very fine granularity of the physical modeling phase we apply a
static data decomposition approach based on graph partitioning. In order to cope
with the high irregularity of the collision handling phase we employ task parallel
techniques based on fully dynamic problem decomposition. We show how both tech-
niques can be integrated into a robust parallel cloth simulation method which can
deal with considerably complex scenes.

Key words: Parallel Cloth Simulation, Parallel Collision Handling, Irregular
Problems, Distributed Memory Architectures

* Corresponding author.

Email addresses: b.thomaszewski@gris.uni-tuebingen.de (Bernhard
Thomaszewski), blochinger@informatik.uni-tuebingen.de (Wolfgang
Blochinger).

Preprint submitted to Elsevier 12 January 2007

1 Introduction

In the last years, substantial research has been carried out in the field of cloth
simulation. Significant improvements have been achieved on understanding
the physical behavior of textiles and on deriving appropriate mathematical
models along with sophisticated simulation methods. However, this progress
also resulted in enormous computational demands, especially when dealing
with high quality animations based on high resolution models. In this paper
we investigate on employing parallel computing to meet these computational
requirements.

The simulation process of cloth comprises a large number of discrete time
steps. Within each such step the computation can logically be divided into
two different phases:

e Physical Modeling Phase
In the first phase of a simulation step internal forces resulting from deforma-
tion and external forces due to effects like gravity or wind are determined.
Based on these forces, updates for nodal velocities and positions are com-
puted according to Newton’s law of motion.

e Collision Handling Phase
The second phase of a simulation step is responsible for detecting and han-
dling interactions of the garment with other objects in the scene and also
interactions of the garment with itself (self-interference). Depending on the
actual method used, this results in motion constraints, repulsion forces or
position and/or velocity updates for individual nodes.

One difficulty of parallel cloth simulation on distributed memory architectures
originates from the very fine granularity of the physical modeling phase. We
employ a data-parallel method for the modeling part, especially designed for
minimizing inter-processor communication. In particular, this was achieved
by data decomposition techniques based on advanced graph-partitioning al-
gorithms.

Especially with textile simulation, several immanent properties of collision
handling make the parallelization of this phase most challenging. Basically,
collision handling is a global problem, because any pair of processors can own
interfering elements. Thus, communication cannot be limited to processors
owning neighboring elements (as within the physical modeling phase). During
the course of simulation, the geometry of the considered object can change
significantly. This means that also communication partners are changing in a
highly dynamic manner. Moreover, interaction patterns cannot be predicted
and are often extremely unstructured. In this paper, we present a task parallel
method for collision handling which can cope with this high degree of irreg-

ularity and which can also be tightly integrated with the physical modeling
phase. To the best of our knowledge, our work represents the first research ef-
fort on parallel collision handling for textile simulation on distributed memory
architectures.

The rest of our paper is organized as follows: In Section 2 we discuss related
work. Section 3 gives a brief account of state-of-the-art cloth simulation meth-
ods. In Section 4 we discuss our approach to parallel cloth simulation in detail.
We report on performance measurements in Section 5.

2 Related Work

2.1 Cloth Simulation

Physically based simulation is a widely adopted paradigm for reproducing the
dynamic behavior of deformable surfaces like cloth. The research literature on
cloth modeling is abundant and we refer the interested reader to the textbooks
[1] and [2]. The seminal work of Baraff and Witkin [3] laid the ground for fast
and stable cloth simulation using implicit time stepping to solve the arising
ordinary differential equations. Later extensions and developments addressed
further physical as well as numerical aspects [4-8]. Despite these advances,
even on recent workstations the simulation of cloth with high resolution meshes
(beyond 10000 vertices) is still very time consuming.

2.2 Parallel Cloth Stmulation

Gutierréz et al. [9] report on a cloth simulation method for NUMA parallel
architectures which employs an implicit integration method for the modeling
phase. Lario et al. [10] describe a rapid parallelization approach of a multilevel
cloth simulator on shared-memory architectures using OpenMP. Zara et al.
[11] deal with parallel cloth simulation on (distributed-memory) PC clusters
employing both, explicit and implicit integration techniques.

The work of Zara et al. is the most related to the research presented in this
paper, both in terms of the employed numerical algorithms and in terms of
the target parallel architecture. The other two approaches are based on shared
address space parallel computers which are certainly more easy to program.
However, they do not scale well and/or have a worse price/performance ratio
compared to distributed-memory architectures, like clusters built of commod-
ity components. A difference between our work and the work of Zara et al.

is the way problem decomposition and task mapping for the modeling phase
is carried out. While we perform a completely static approach based on data
partitioning which minimizes inter-processor interaction, the work of Zara et
al. is based on partitioning dynamically generated task dependency graphs.
In contrast to our work, all other approaches to parallel cloth simulation do
not explicitly address collision handling. This limits their usefulness to simple
scenes.

2.3 Parallel Contact Detection

Parallel contact detection has previously been studied in the context of var-
ious applications from the engineering domain, e.g. simulation of projectile
penetration [12] or simulation of foam compression [13]. The basic principle
of these approaches is to identify a subset of elements which can potentially
get in contact. These elements are called surface elements and typically consti-
tute only a small fraction of the total number of elements in the simulation. In
[13] a separate partitioning is used during the collision handling phase which
exclusively considers surface elements. Alternatively, multi-constraint, multi-
objective graph partitioning algorithms are employed to avoid expensive relo-
cation actions between the two phases [12]. In cloth simulation, every element
is a surface element and it is not possible to predict the set of elements which
actually interfere. Thus, approaches exclusively based on graph-partitioning
are not suitable for collision handling in parallel cloth simulation.

3 Physically Based Cloth Simulation

For the realistic simulation of complex dynamic systems such as clothes there
is virtually no alternative to physically based modeling. The range of existing
approaches in this area is still abundant. Methods vary from very simplified
models for real-time scenarios (e.g. video games) to techniques that were de-
signed to reproduce measured material parameters in an accurate way. These
latter approaches usually have high computational demands due do the nu-
merical models used and the resolution of the meshes required. In the following
paragraphs we will briefly outline the (sequential) method which forms the ba-
sis for our parallel implementation. This involves the description of the phys-
ical model, the numerical time integration scheme and the collision handling
algorithm.

3.1 Physical Model

For the physical model we rely on an approach based on continuum mechanics.
The basic quantities are strain which is a dimensionless deformation and stress
which is a force per area or length. The two are connected via a constitutive
relation, i.e. a material law which in our case is linear. The result of this
approach is a partial differential equation which has to be discretized in space
using numerical methods. To this end, we use a linear finite element approach
as described in [7]. This yields a system (or stiffness) matrix relating nodal
displacements of the mesh to forces acting on the nodes. Because only local
neighbors have influence on the force on one node, this matrix is sparse. The
system is extended to account for dynamic motion according to Newton'’s
second law, leaving the following system of coupled ODEs

#(t) = o(t)
o(t)=M""f(x(t),v(t)) -

To obtain the dynamic evolution of the system these equation have to be
stepped forward in time. In the case of cloth simulation the system equations
are inherently stiff and are thus susceptible to instabilities when using explicit
integration schemes. Since the work of Baraff et al. [3] the computer graphics
community has settled on using implicit integration schemes for cloth simula-
tion. The heart of this method is the solution of a sparse LES which can be
carried out in a convenient way using the conjugate gradient (cg) method [14].

3.2 Collision Handling

Besides the simulation of the intrinsic properties of cloth the interaction with
its environment has to be modeled. This involves the detection of any collisions
and an adequate response to prevent the clothes from intersecting. The proper
treatment of these two components (to which we refer as collision handling
in the remainder) is a very complex task [15]. While the physical simulation
engine computes new states at distinct intervals only, collisions can occur at
any instant in between such intervals. Algorithms that handle these cases in a
robust way are often very complex and time consuming such that the collision
handling step soon becomes a bottleneck in the simulation pipeline.

Basically, detecting interference between two arbitrarily shaped objects breaks
down to determining the interference between all of the primitives (i.e. faces,
edges, and vertices) of one mesh with every primitive of the meshes represent-
ing the other objects. With complex objects comprising thousands of faces,

<
N %
o A

Fig. 1. Interfering objects. Left: Different levels of the BVH. Right: Overlapping

Faces.
Q (@)
@O ® @ 0 ®

Fig. 2. BVH structure for the two objects in Fig. 1. Overlapping leaf nodes are
marked.

Fig. 3. Test tree for the colliding objects shown in Fig. 1.

this nalve approach soon becomes too expensive, because of its quadratic com-
plexity wrt. the number of faces.

A common way to accelerate the interference tests is to structure the ob-
jects under consideration hierarchically with bounding volumes. Usually, a
bounding volume hierarchy (BVH) is constructed for each object in the scene
(including deformable as well as rigid objects) in a preprocessing step in the
following way (see Fig. 1 and 2): a bounding volume enclosing the entire ob-
ject is set as the root node of the tree representing the hierarchy. This node is
then subdivided recursively until a leaf criterion is reached. Usually, the leaves
contain one single primitive.

For our implementation we use the approach described in [16] which is based
on a BVH with discrete oriented polytopes (k-Dops) as bounding volumes.
More specifically, we use binary trees with 18-Dops, i.e. the bounding volumes
are enclosed by 18 planes with predefined (discrete) orientation. With a BVH
constructed, the test for intersection between two objects now proceeds as
follows: first, the bounding volumes corresponding to the root nodes of the
two hierarchies are tested for intersection. Only if these two overlap the cor-
responding children bounding volumes are recursively tested for intersections
(see Fig. 3). Besides the interference with other objects the cloth can also in-
tersect with itself. Basically, the same algorithms can be used to find these self
collisions but here, an efficient strategy is even more important. Usually, crite-

rions based on surface curvature are used to rule out non-intersecting parts of
the cloth quickly (cf. [17]). This interference test delivers a pair of primitives
that are close to each other or intersect.

A robust method to prevent the imminent intersection was presented by Brid-
son et al. [18]. Our own collision response is based on this approach. The
essence of this algorithm is to apply a stopping impulse to approaching tri-
angles (i.e. adjust their nodal velocities) whenever their distance falls below
a certain threshold. We briefly outline our method along with some necessary
extensions in the following.

The collision detection stage provides a set of close face pairs. This set is
the input for the subsequent collision response phase. Every such colliding
face pair is further decomposed into a set of lower level collisions among the
geometric components of the faces, i.e. triangles, edges and vertices. This
results in 6 vertex-triangle and 9 edge-edge collisions which are then treated
separately. For each of these elementary collisions an impulse is calculated
which, when applied to the involved components, prevents intersection. The
direction and magnitude of the impulse is computed according to the geometric
distance of the entities. A drawback of this method is that without further
action multiple responses are computed for the same component. For example,
an edge shared by two adjacent faces will receive impulses from both of the
triangles. In the original sequential version of the algorithm this problem does
not occur. Because impulses are applied immediately the resulting change in
velocity influences and thus weakens subsequently computed impulses. Such
an approach, however, does not translate to the parallel setting because it
would lead to excessive communication. At first sight, it seems a possible
alternative to accumulate the impulses for every vertex and normalize them
afterwards. From our numerous experiments we learned that this approach
does not lead to satisfying results. For some kinds of collisions the so generated
impulses work well but for most of them (especially large planar collisions) the
impulses are too weak to prevent intersection. However, a maximum projection
of the impulses for every vertex yields good results in all cases. The rationale
behind this is that the impulses are based on totally inelastic collisions and
their magnitude is therefore always limited. Hence, the kinematic energy (and
thus the magnitude of the relative velocities) of the involved vertices is never
increased by applying the maximum impulse.

4 Parallel Cloth Simulation

In this section, we discuss our approach to parallel cloth simulation, focusing
on the collision handling stage. We commence with a brief overview of our
methodology to parallelize the physical modeling phase. Our goal is to provide

Fig. 4. Partitioning of a shirt for 12 processors.

sufficient information to illustrate the constraints which (mutually) influence
the choice of parallelization strategies for each of the two phases. A complete
treatment of the parallelization of this phase can be found in [19].

Subsequently, we turn to discussing the parallel techniques we have developed
to speed-up collision handling. Our basic approach has been outlined in [20].
In this paper, we additionally elaborate on refined methods for problem de-
composition and for load balancing. In particular, we discuss a heuristics for
steering the granularity of the generated tasks and an efficient scheme for rep-
resenting tasks to be executed on remote nodes. Moreover, in Section 5 we
present the results of a more comprehensive experimental study. Our aim is
to provide more detailed insights into the performance characteristics of our
approach to parallel collision handling.

4.1 Parallel Physical Modeling

4.1.1 Problem Decomposition and Load Balancing

Compared to similar physically based simulation applications from other do-
mains (e.g. climate modeling), problem sizes in cloth animation (in terms of
the number of unknowns to be computed within each step) are typically much
smaller. The resulting fine granularity represents a significant challenge for
parallelizing the physical modeling phase of a cloth simulator. In order to
minimize parallel run-time overhead, we apply a static problem decomposi-
tion and load balancing scheme based on data decomposition. The basic idea
is to partition the vertices of the input mesh into groups of vertices with the
same size and statically assign each group to one processor.

The positions of neighboring vertices which belong to different processors have
to be explicitly communicated during the setup of the LES and also in every
iteration of the cg procedure. Such vertices are called ghost-points, because
they physically belong to one, but logically belong to two processors. To en-
sure high parallel efficiency, it is crucial to minimize communication overhead,
i.e. minimizing the number of ghost-points. We employ graph partitioning

Algorithm 1 SPMD based parallel algorithm
partition mesh
delivers (new) parallel numbering of vertices
redistribute initial positions vector acc. to parallel numbering
loop
communicate ghost points
setup LES
compute the matrix A and the right hand side vector b.
solve LES
compute the new velocities by solving Av(t + h) = b with cg method
(requires communication of ghost values)
compute new positions
x(t+h)=x(t) + hv(t+ h)
collision handling
see Section 4.2
if (reached frame interval) then
all-to-one gather positions vector
if (NODE-ID == 0) then
permute position vector to application numbering
generate frame
end if
end if
end loop

techniques to balance the load and at the same time to minimize communi-
cation among the processors. Figure 4 shows an exemplary partitioning of a
shirt, we obtained by applying a multilevel k-way graph partitioning algorithm
[21]. The partitioning process delivers a new ordering of the vertices, called
the parallel numbering. In the parallel numbering each processor owns a con-
secutive range of vertex numbers resulting in a 1-dimensional, row-oriented
parallel layout of the involved data structures (i.e. matrices and vectors). For
generating output data, the respective data structures have to be permuted
back to the application specific ordering.

After the initial decomposition stage, every processor holds a part of the global
position, vertex and normal vector. The parallel simulation loop can now be
executed in a synchronous SPMD (single program multiple data) fashion where
every processor operates on the local parts of the data structures and the ghost
points. Algorithm 1 shows the complete SPMD message passing algorithm for
the physical modeling phase. It also serves us as the algorithmic framework
for embedding the parallel collision handling phase (see Section 4.2).

4.1.2 Implementation

The physical modeling phase is built on top of the PETSc parallel toolkit
[22,23]. PETSc is a suite of parallel data structures and routines for build-
ing scalable parallel scientific applications. It is based on the MPI (Message
Passing Interface) standard and supports an SPMD (Single Program Multi-
ple Data) style of parallel programming which is located at a higher level of
abstraction than the pure SPMD message passing programming model. For
mesh partitioning we use the parallel multilevel graph partitioning function-
ality provided by the ParMetis [21] graph partitioning library.

4.2 Parallel Collision Handling

As discussed in Section 1, the specific challenge of parallelizing the collision
handling process originates from its high irregularity. Thus, extending (in a
straightforward manner) the data-parallel SPMD approach of the physical
modeling phase to the collision handling phase is not promising. Depending
on the actual locations and types of the collisions, the amount of time spent in
collision handling would differ considerably among the processors. The result-
ing high degree of processor idling can seriously degrade parallel efficiency of
the whole execution process. Moreover, the locations of collisions can change
rapidly during the course of the simulation and cannot be predicted. Conse-
quently, static techniques for problem decomposition are not well suited. In
order to deal with the outlined issues, we propose a highly dynamic, task par-
allel approach for accelerating the collision handling phase, which we describe
in this section.

4.2.1 Parallel Collision Handling Framework

Generally, we can distinguish between two different types of collisions: ex-
ternal collisions and self collisions. To detect the first type we have to test
our deformable object against every other (rigid or deformable) object in the
scene. For the latter case, the deformable object has to be tested against itself.
In this section, we show how this basic collision handling procedure can be
integrated into the SPMD parallel framework of our cloth simulator.

As explained in Section 3.2, we use a bounding volume hierarchy to speed up
the collision detection stage. For embedding collision handling into the SPMD
framework, the BV hierarchy is built as follows: The problem decomposition
stage of the physical modeling phase supplies us with a number of disjoint par-
titions of the vertices of the input mesh. For each processor we now proceed in
the following way: a local mesh is constructed corresponding to the assigned
vertices. Then, a BVH hierarchy is set up on this mesh using a top-down

10

Fig. 5. Dynamic problem decomposition. The arrow indicates the current state of the
BVH testing procedure. The stack on the right stores the root of untried branches.

approach. Once this is done, we combine the root nodes of the different pro-
cessors to form a global hierarchy of the mesh. Testing a textile for interference
with other objects is now carried out in the standard manner. First, the root
node of the garment’s BVH is tested against the other object’s root node. If
they overlap, the trees of the processors are recursively tested. This approach
works well for standard collisions but for self collisions a different strategy has
to be pursued. In our SPMD context we must distinguish between two differ-
ent types of self collisions: namely collisions between sub-meshes of different
processors and those that are real self collisions on the processor-local mesh.
For the latter case we can use existing techniques since this corresponds to the
usual self collision problem. For the case of inter-processor self collisions we
test the corresponding BVHs against each other, similar to the way standard
collisions are treated.

All discussed BVH tests form a set of top-level tasks of our parallel colli-
sion handling method. However, for scenes where collisions are not uniformly
distributed, the number of top-level tasks and also the amount of time to ex-
ecute individual top-level tasks can differ considerably among the processors.
(In Section 5.2 we present examples where such uneven processor load can be
observed.) In the following, we discuss a task-parallel approach which dynam-
ically decomposes top-level tasks into smaller sub-tasks for evenly distributing
the load among the processors.

4.2.2 Dynamic Problem Decomposition

Our method for dynamic problem decomposition is based on modifying the
BVH testing procedure (see Section 3.2). We create sub-tasks which are re-
sponsible for detecting a subset of the collisions of the original task. Thus,
the result of a sub-task is an appropriate partial collision response (in the
form of impulses for the involved geometric entities). All partial responses are
combined at the end of the collision handling phase by one all-to-all broadcast
operation and applied to the positions vector.

For dynamically generating new tasks, every processor maintains a stack data
structure which records untried branches of the BVH testing tree of the current

11

top-level task. In the BVH testing procedure, expansion of a tree node results
in two additional tree nodes each representing a refined BVH test. As in the
sequential procedure, the first test is carried out by starting a new recursion
level. However, before entering the recursion, the second test is pushed onto
the stack. Figure 5 shows a snapshot of a BVH testing process along with the
corresponding state of the stack. (In Section 4.2.3 we discuss an appropriate
representation of individual BVH tests, which can be used for efficiently storing
them in a data structure.)

Tests which are recorded on the stack can be executed in one of the following
ways:

e A test can be removed from the top of the stack and executed sequentially
when the recursion gets back to the current level. Conceptually, this case is
very similar to the procedure of the original algorithm.

e One or more tests can be removed from the bottom of the stack and executed
by a newly generated (sub-)task. For each assigned test, this task executes
a BVH testing procedure for which the considered test defines the root of a
BVH testing tree.

In oder to prevent that tasks of too fine a granularity are generated, several
tests can be removed at once from the stack and assigned to a single task.

In our approach, problem decomposition is steered by the load balancing pro-
cess (see Section 4.2.4). Before discussing specific details of load balancing,
we first turn to the problem of finding a representation of tasks which enables
efficient task transfers.

4.2.83 Task Representation

For dynamic load balancing tasks must be transferred between processors at
run-time. In distributed memory architectures, task transfers require explicit
communication operations. Depending on the information associated with a
task, task transfers can significantly contribute to the overall parallel over-
head, especially when the computation to communication ratio of the tasks is
poor. Finding a compact description of tasks is therefore crucial to minimize
communication overhead. In our case, the cost for transferring a task is largely
determined by the representation of the associated BVH tests.

Including complete BVH information for each individual test (i.e. the entire
representations of two the sub-hierarchies defined by the test) into a task
would lead to a considerable task size and thus is unfeasible.

Consequently, we replicate on each node the BV hierarchy for every object in
the scene such that on all nodes the identical context is provided for execut-

12

ing BVH tests. Particularly, all objects and all DOPS are enumerated in the
same order on all processors. This enables us to represent an individual test
simply as an array of integers of the form (0bj1, dopl, 0bj2, dop2). The two BV
hierarchies to be tested are identified by obj1 and 0bj2, and the root of the
test is specified by dopl and dop?2.

While this approach imposes additional costs for building the copies of the BV
hierarchies at the initialization phase of the computation, the overhead dur-
ing the course of the simulation is insignificant: Updating hierarchies (at the
beginning of every collision handling phase) requires one all-to-all broadcast
operation to provide all processors the complete positions vector. (Note that
the structure of the BV hierarchy is kept fix during the whole computation.)

4.2.4 Dynamic Load Balancing

In our application, the dynamic load balancing process is responsible for trig-
gering and coordinating task creation and task transfer operations in order to
prevent that processors run idle. Basically, load balancing can employ a central
controller or can be organized in a distributed manner. A central controller can
establish a more accurate view of the current load of the processors, but also
soon becomes the sequential bottleneck of a parallel computation. In order
to achieve high scalability, we employ a fully distributed scheme. Specifically,
our method is based on the distributed task pool model, i.e. every processor
maintains a local task pool. Upon creation, a task is first placed in the local
task pool. Subsequently, it can be instantiated and executed locally, when the
processor gets idle. It also might be transfered to a remote task pool for load
balancing purposes. As discussed subsequently, task creation and task transfer
operations are initiated autonomously by the processors.

Task Creation Basically, tasks are generated dynamically employing the
decomposition techniques discussed in Section 4.2.2. To achieve a high degree
of efficiency an (active) processor must be able to satisfy task requests from
other processors immediately. Additionally, we must ensure that tasks with
sufficient granularity are generated. In our case, this means that when a task
is to be created, the stack must contain a minimum number of BVH tests
which can be assigned to the task. In order to meet both requirements, we
generate tasks in a proactive fashion, i.e. independently of incoming tasks
requests. Tasks are generated (and placed in the local task pool) when the
size of the stack exceeds a threshold value 7. Since task generation generally
imposes an overhead (even when the new task is subsequently executed on the
same processor) we increase 7 linearly with the current size of the task pool
o: T = ao + b. This simple heuristics enables us on the one hand to provide
in a timely fashion tasks with a minimum granularity (determined by b) and

13

ensures on the other hand that the overhead of additional task decomposition
operations is compensated by an increased granularity of the resulting tasks.
The parameter values a and b largely depend on the parallel architecture
used and should be determined experimentally. In our performance tests (see
Section 5), choosing a = 2 and b = 8 delivered the best results.

A new task gets 7/2 tests, where the tests are taken from the bottom of the
stack. Tests are taken from the bottom of the stack for creating new tasks
because such tests have a higher potential of representing a large testing tree
since they originate closer to the root of the current testing tree.

Task Transfer For transferring tasks between task pools we employ a re-
ceiver initiated scheme. When a processor runs idle and the local task pool is
empty, it tries to steal tasks from remote pools. First, a victim node is chosen
to which a request for tasks is sent. For selecting victims we apply a round
robin scheme. If available, the victim transfers a task from its pool to the local
pool. Otherwise the request is rejected by sending a corresponding message.
In the latter case another victim node is chosen and a new request is issued.

4.2.5 Implementation

The implementation of the previously described methods for parallel collision
handling is based on the parallel system platform DOTS [24]. DOTS provides
extensive support for the multithreading parallel programming model (not to
be confused with the shared-memory model) which is particularly suited for
task-parallel applications that employ fully dynamic problem decomposition.

DOTS Programming Model The key concept of the DOTS programming
model are thread group objects which serve as links between different prim-
itives of the API. Upon creation, a thread is either explicitly or implicitly
placed into a thread group, calling dots_fork or dots_hyperfork, respectively. In
the former case, the thread group object has to be supplied as argument to
dots_fork. In the latter case, the thread is placed implicitly in the same thread
group as its parent thread (which might have been created by a different pro-
cessor). In both cases, a procedure to be executed by the child thread and an
argument-object has to be supplied. For all subsequently applied primitives
it is not relevant whether a thread has been placed explicitly or implicitly
into a thread group. Threads return result objects employing dots_return. The
dots_join primitive is used to retrieve results of threads from a given thread
group applying join-any semantics: The first result which becomes available
from any thread in the group is delivered. If no results are available, the call-
ing thread is blocked until a thread of the group delivers a result. If a thread

14

has finished execution and all result objects of the thread have been joined, it
is removed from the thread group. By checking the return value of dots_join,
termination of a computation can be determined.

Parallel Collision Handling Using DOTS For initiating the task-parallel
execution process, we create on every processor threads which execute the
top-level tasks of our parallel collision handling method (see Section 4.2.1).
Threads that execute top-level tasks are created using the dots_fork primitive.
All threads are placed into the same thread group. Upon completion, each
thread delivers a set of impulses which represent an appropriated collision
response for the corresponding top-level collision handling task.

Tasks resulting from dynamic problem decomposition (see Section 4.2.2) are
modeled by DOTS threads that are created with the dots_hyperfork primitive.
This approach enables us to easily synchronize with the completion of the
collision handling phase regardless how many decomposition operations took
place. We simply apply dots_join operations on the thread group until termina-
tion of the execution is indicated. (Note that the actual number of generated
tasks largely depends on the considered scene and cannot be statically deter-
mined.)

Using the load balancing extension framework of DOTS we integrated the
task transfer scheme described in Section 4.2.4. This is accomplished by im-
plementing appropriate event-handlers defined by the framework.

5 Performance Measurements

5.1 Test Scenarios

We evaluate the performance of our approach using two test scenarios. To
demonstrate the robustness of our method we focused on problems with a
high degree of irregularity.

Scene 1:

For this test scene we let a round table cloth comprising 14033 vertices drape
over a sphere with roughly on third of the cloth’s diameter (see Figure 9).
Initially, collisions only occur in a locally restricted region in the center of
the cloth. As the simulation proceeds, the distribution of the collisions in the
scene becomes more even. In the last part of the sequence the formation of folds
exhibiting complicated self collisions can be observed. Finally, inter-processor
self collisions occur at the border regions of the cloth.

15

Scene 2:

This scene consists of a square piece of cloth with 14641 vertices draping over
a thin ondulated bar which is posed at some distance to a floor (see Figure 10).
Again, the collisions are locally restricted in the first part of the simulation.
Due to the special shape of the bar complicated folding patterns are formed as
the cloth falls further downwards. When the cloth reaches the floor, collision
occur more widespread in the mesh and the setting becomes more regular.
In this scenario rigid collisions are inititally predominant. As the simulation
proceeds, fairly complex self collisions are produced: the cloth folds over itself
while it slides towards the troughs of the bar.

5.2 Tests and Results

We used a Linux based cluster for carrying out performance measurements. All
compute nodes are equipped with Intel Xeon processors (2.667 GHz) and with
2 GB of main memory. The nodes are connected by a Myrinet-2000 network.

All program runs compute 25 frames of our test scenes, where a single frame
comprises 40 simulation steps. For each investigated setting, the presented
performance results are based on the arithmetic mean of the wall-clock times
of three individual parallel runs. Time values given for one processor are based
on the sequential version of our application. (It employs sequential data struc-
tures and sequential arithmetic operations for the physical modeling phase
and performs no dynamic problem decomposition during the collision han-
dling phase.)

Figure 6 and Figure 7 depict the results of the performance measurements for
our two test scenarios. Despite the high degree of irregularity of both scenes,
the overall computation time as well as the individual run-times of the physical
modeling and the collision handling phases can be substantially reduced by
parallel execution.

In all our test cases, the time required for collision handling is greater than
the time spent in physical modeling. For both scenes, the run times of the
physical modeling phases are comparable. Due to the increased occurrence
of self-collisions in scene 1, times needed for collision handling (and thus the
total run times) are noticeably greater than in scene 2.

Independently of the number of processors (and the number of computed
frames), we observe a constant amount of time (scenel: about 140 s, scene2:
about 80 s) spent in preprocessing (essentially mesh partitioning and setting
up BV hierarchies). With an increased total run time (i.e. computing more
frames) this sequential fraction of the computation becomes less dominant. In
typical production runs (with several hundreds of frames) we can expect that

16

Time (sec) Speedups

13000 11
12000 - 10 .
11000 A 9
10000 - s o,
9000 A
8000 1 7 ;//'-’/
7000 A 6 //
6000 A 5
5000 1 4 =
4000 3 /
3000 A 5
2000 A
1000 1 =/
0 0 T T T T T T
1 2 4 6 8 10 12 1 2 4 6 8 10 12
Number of Processors Number of Processors
B Physical Modeling B Collision Handling O Preprocessing ‘ ‘—O—Total —=— Physical Modeling —— Collision Handling

Fig. 6. Results of performance measurements for scene 1.

Time (sec) Speedups
10000 10
9000 A 9 =
8000 A 8
7000 A 7 ///7/‘
6000 A 6 /
5000 A 5 /
4000 1 4 /
3000 A 3 /
2000 A 2 /
1000 7 1 -
0 0 T T T T T T
1 2 4 6 8 10 12 1 2 4 6 8 10 12
Number of Processors Number of Processors
B Physical Modeling B Collision Handling O Preprocessing ‘ ‘—O—Total —=— Physical Modeling —— Collision Handling

Fig. 7. Results of performance measurements for scene 2.

the individual speedups of the physical modeling and of the collision handling
phase contribute to the overall speedup in a largely undiminished way.

In Figure 8 we compare two program runs on 12 processors for each of our
two test scenes. The diagrams illustrate the average cpu utilization of each
processor for the collision handling phases of all computed frames. For the
program runs depicted in the diagrams on the left side, problem decomposi-
tion and load balancing were disabled. The diagrams on the right side show
the program runs with dynamic problem decomposition and load balancing.
Additionally, the left diagrams give the total time spent in collision handling
for each frame (comprising 40 individual collision handling phases), and the
right diagrams give the improvement of parallel efficiency obtained for com-
puting the respective frame employing dynamic problem decomposition. Note
that the times spent in collision handling increase by one to two orders of
magnitude when complex collisions are encountered in the scene.

As the tests reveal, employing dynamic problem decomposition and load bal-
ancing for the collision handling phase can considerably improve parallel ef-

17

(b) Scene 2

Fig. 8. Effect of dynamic problem decomposition and load balancing on the parallel
efficiency of the collision handling phase.

ficiency, especially when intricate and unevenly distributed (self-)collisions
appear in the scene. For the first few frames, where no interactions occur at
all, we observe slight slowdowns which reflect the overhead introduced by our
highly dynamic method.

6 Conclusion

We discussed a parallel approach to cloth simulation for distributed memory
architectures, which comprises parallelization of physical modeling as well as
of collision handling. The main contribution of our paper is a novel method
for parallel collision handling which is capable to cope with the high irregular-
ity exhibited with cloth simulation. In our approach problem decomposition
and load balancing are tightly interrelated, realizing self-adapting parallelism.
For regular scenes where collisions are evenly distributed on the processors,
the overall amount of dynamic parallelism is limited. In contrast, if processors
run idle due to an uneven distribution of the collisions, additional parallelism
is generated and balanced over the processors. We seamlessly integrated the
task parallel collision handling phase into the SPMD data parallel framework

18

imposed by the physical modeling phase. Thus, our parallel approach to cloth
simulation represents an example where considerably dissimilar types of par-
allelism could be beneficially combined within one application.

References

[1] P. Volino, N. Magnenat-Thalmann, Virtual Clothing, Springer, 2000.

[2] D. H. House, D. E. Breen (Eds.), Cloth Modeling and Animation, A K Peters,
2000.

[3] D. Baraff, A. Witkin, Large Steps in Cloth Simulation, in: Computer Graphics
(Proc. SIGGRAPH), 1998, pp. 43-54.

[4] B. Eberhardt, O. Etzmuf}, M. Hauth, Implicit-Explicit Schemes for Fast
Animation with Particle Systems, in: Eurographics Computer Animation and
Simulation Workshop, 2000.

[5] P. Volino, N. Magnenat-Thalmann, Comparing Efficiency of Integration
Methods for Cloth Animation, in: Computer Graphics International
Proceedings, 2001.

[6] K.-J. Choi, H.-S. Ko, Stable but Responsive Cloth, in: Computer Graphics
(Proc. SIGGRAPH), 2002, pp. 604-611.

[7] O.Etzmuf}, M. Keckeisen, W. Strafier, A Fast Finite Element Solution for Cloth
Modelling, Proc. Pacific Graphics.

[8] M. Hauth, O. Etzmuf}; A High Performance Solver for the Animation
of Deformable Objects using Advanced Numerical Methods, in: Computer
Graphics Forum, 2001, pp. 319-328.

[9] E. Gutierréz, S. Romero, L. F. Romero, O. Plata, E. L. Zapata, Parallel
techniques in irregular codes: cloth simulation as case of study, Journal of
Parallel and Distributed Computing 65 (4) (2005) 424-436.

[10] R. Lario, C. Garcia, M. Prieto, F. Tirado, Rapid Parallelization of a Multilevel
Cloth Simulator Using OpenMP, in: Third European Workshop on OpenMP,
2001.

[11] F. Zara, F. Faure, J.-M. Vincent, Parallel simulation of large dynamic system
on a pcs cluster: Application to cloth simulation, International Journal of
Computers and Applications 26 (3).

[12] G. Karypis, Multi constraint mesh partitioning for contact/impact
computations, in: Proc. of the 2003 ACM/IEEE Conf. on Supercomputing,
IEEE Computer Society, Washington, DC, USA, 2003, p. 56.

[13] K. Brown, S. Attaway, S.J.Plimpton, B. Hendrickson, Parallel strategies for
crash and impact simulations, Computer Methods in Applied Mechanics and
Engineering 184 (2000) 375-390.

19

[14] J. R. Shewchuck, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain, http://www.cs.cmu.edu/ quake-papers/painless-conjugate-
gradient.ps (1994).

[15] M. Teschner, B. Heidelberger, D. Manocha, N. Govindaraju, G. Zachmann,
S. Kimmerle, J. Mezger, A. Fuhrmann, Collision Handling in Dynamic
Simulation Environments, in: Eurographics Tutorials, 2005, pp. 79-185.

[16] J. Mezger, S. Kimmerle, O. Etzmu8, Hierarchical Techniques in Collision
Detection for Cloth Animation, Journal of WSCG 11 (2) (2003) 322-329.

[17] P. Volino, N. Thalmann, Collision and Self-Collision Detection: Efficient and
Robust Solutions for Highly Deformable Surfaces, in: Comp. Animation and
Simulation, 1995.

[18] R. Bridson, R. P. Fedkiw, J. Anderson, Robust Treatment of Collisions, Contact,
and Friction for Cloth Animation, in: Computer Graphics (Proc. SSIGGRAPH),
2002, pp. 594-603.

[19] M. Keckeisen, W. Blochinger, Parallel implicit integration for cloth animations
on distributed memory architectures, in: Proc. of Eurographics Symposium on
Parallel Graphics and Visualization 2004, Grenoble, France, 2004.

[20] B. Thomaszewski, W. Blochinger, Parallel simulation of cloth on distributed
memory architectures, in: Proc. of Eurographics Symposium on Parallel
Graphics and Visualization 2006, Braga, Portugal, 2006.

[21] G. Karypis, V. Kumar, Parallel Multilevel k-way Partitioning Schemes for
Irregular Graphs, Tech. Rep. 036, Minneapolis, MN 55454 (May 1996).

[22] S. Balay, W. D. Gropp, L. C. Mclnnes, B. F. Smith, Efficient management
of parallelism in object oriented numerical software libraries, in: E. Arge,
A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in Scientific
Computing, Birkhauser Press, 1997, pp. 163-202.

[23] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes,
B. F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision
2.1.5, Argonne National Laboratory (2002).

[24] W. Blochinger, W. Kiichlin, C. Ludwig, A. Weber, An object-oriented platform
for distributed high-performance Symbolic Computation, Mathematics and
Computers in Simulation 49 (1999) 161-178.

20

Fig. 9. Test Scene 1 (Colors in upper row indicate mesh partitioning)

Fig. 10. Test Scene 2 (Colors in upper row indicate mesh partitioning)

21

