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Parallel Propositional Satisfiability Checking
with Distributed Dynamic Learning

Wolfgang Blochinger Carsten Sinz Wolfgang Küchlin

Symbolic Computation Group, WSI
University of Tübingen, 72076 Tübingen, Germany
http://www-sr.informatik.uni-tuebingen.de

Abstract

We address the parallelization and distributed execution of an algorithm from the
area of symbolic computation: propositional satisfiability (SAT) checking with dy-
namic learning. Our parallel programming models are strict multithreading for the
core SAT checking procedure, complemented by mobile agents realizing a distributed
dynamic learning process. Individual threads treat dynamically created subprob-
lems, while mobile agents collect and distribute pertinent knowledge obtained during
the learning process. The parallel algorithm runs on top of our parallel system plat-
form DOTS (Distributed Object-Oriented Threads System), which provides support
for our parallel programming models in highly heterogeneous distributed systems.
We present performance measurements evaluating the performance gains by our
approach in different application domains with practical significance.

Key words: parallel symbolic computation, parallel propositional satisfiability
checking, distributed multithreading

1 Introduction

This paper deals with the parallelization of a novel propositional satisfiabil-
ity (SAT) checking algorithm with dynamic learning. The SAT problem asks
whether one can find for a given Boolean formula a variable assignment such
that the formula evaluates to true. Besides its theoretical importance, also
many problems with practical relevance from a wide range of disciplines, in-
cluding hardware verification, cryptanalysis, or planning and scheduling, can
be encoded as SAT instances and efficiently solved by SAT checkers.
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SAT has been the first problem proven to be NP-complete [12]. Consequently,
for all currently known SAT algorithms there exist problem instances with
exponential run-times. However, advanced methods along with sophisticated
heuristics can dramatically reduce the computation time for many problem
classes of practical relevance. In these cases, parallel SAT checking is an im-
portant means to reduce the computation time even further.

The classical Davis-Putnam-Logemann-Loveland SAT procedure [14,13] was
introduced in the early 1960s, and parallel versions of this algorithm have been
developed by Zhang et al. [36] and by Boehm and Speckenmeyer [8] in 1996,
both using similar techniques. In this paper we address the parallelization of
the state-of-the-art algorithm introduced by Marques-Silva and Sakallah [24]
which enhances the Davis-Putnam-Logemann-Loveland method with dynamic
learning techniques based on conflict analysis and lemma generation. The
dynamic learning process can further dramatically reduce the run-time for a
number of important problem classes. (Table 1 in Section 5 shows examples of
performance improvements for the sequential algorithm which can be obtained
using the dynamic learning technique.) Due to this significant improvement of
the sequential algorithm it is crucial that the parallel variant also incorporates
a dynamic learning process.

Generally, the parallelization of algorithms from the field of symbolic com-
putation, like SAT checking, has not been as extensively investigated as the
parallelization of numerical algorithms. One reason for this might be that sym-
bolic algorithms tend to be more unstable in several respects. First, symbolic
algorithms are typically very data dependent and therefore highly irregular in
their course of action; as a consequence, static parallelization or static load
balancing are not feasible. Second, theoretical enhancements of the sequential
algorithms often lead to dramatic performance gains. It is therefore crucial to
base the parallel application on the best known sequential algorithm, but opti-
mized algorithms frequently accumulate knowledge in complex data-structures
or state information which must now be distributed to the parallel tasks, in-
creasing their synchronization overhead. Nevertheless, parallelization can also
be very beneficial, because in the field of symbolic computation algorithm
complexities are very high and there is little other hardware support.

The remainder of the paper is organized as follows. In Section 2 a brief in-
troduction to the SAT problem is given and the state-of-the-art sequential
SAT checking algorithm is explained. Section 3 discusses suitable parallel pro-
gramming models for its parallelization and presents our parallel approach.
Section 4 gives a brief description of our parallel system platform DOTS and
focuses on details of the implementation of our parallel algorithm using DOTS.
The results of performance measurements are reported in Section 5. Section 6
discusses related work, and Section 7 contains a conclusion.
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2 Introduction to SAT Checking

2.1 Problem Description

The SAT problem asks whether or not a Boolean formula has a model. We
may assume w.l.o.g. that the formula is in conjunctive normal form (CNF),
i.e., it is a conjunction of clauses, where a clause is a disjunction of literals, and
a literal is a propositional variable or its negation. A clause containing exactly
one literal is called a unit clause, the empty clause ∅ is a clause containing no
literals at all. A solution to a SAT problem instance assigns to each variable
a value (either true or false), such that in each clause at least one literal
becomes true, and thus all clauses are simultaneously satisfied. Thus, a set
of clauses containing the empty clause is inconsistent, because it never has a
solution.

Since in a formula in CNF the logical connectives (disjunction ∨ and con-
junction ∧) are determined by its structure, they are often omitted. Clauses
are then represented as sets of literals, and formulae as sets of clauses. For
example, the Boolean logic formula

(x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ x3,

which is in CNF, translates into the set of clauses

{{x2, x3}, {x1, x3}, {x1, x2, x3}, {x3}}.

For this formula, resp. clause set, the function assigning true to x2 and x3,
and false to x1, is the only model resp. solution.

2.2 The DP Algorithm with Dynamic Learning

Basically, by trying out all possible variable assignments one after the other,
one finally finds a solution to a given SAT-instance, provided that such a so-
lution exists. The Davis-Putnam-Logemann-Loveland algorithm [14,13] (also
commonly known as the DP algorithm) performs an optimized search by ex-
tending partial variable assignments, and by simplifying the resulting subprob-
lems by applying two constraint propagation operations known as unit sub-
sumption and unit resolution. In 1996, Marques-Silva and Sakallah proposed an
extension of the classical DP algorithm by dynamic learning techniques based
on conflict analysis and—as a by-product—non-chronological backtracking
[24]. This enhancement often leads to considerable improvements, especially
on structured real-world SAT instances. It has now become a quasi-standard,
and is implemented in most of today’s SAT checkers [27,35].
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boolean DP(ClauseSet S, Level d )
{

while (S contains a unit clause {L}) {
register cause of L becoming unit // conflict management
delete clauses containing L from S // unit-subsumption
delete L from all clauses in S // unit-resolution

}
if (∅ ∈ S) { // empty clause?

generate conflict induced clause CC // conflict management
add CC to S
return false

}
if (S = ∅) return true // no clauses?
choose a literal Ld+1 occurring in S // case-splitting on Ld+1

if (DP(S ∪ {{Ld+1}}), d + 1) return true // first branch
else if (DP(S ∪ {{Ld+1}}), d + 1) return true // second branch
else return false

}

Fig. 1. The Sequential DP Algorithm with Dynamic Learning

Since our parallel SAT checker also employs these new techniques, this section
presents the basic concepts of the DP algorithm with dynamic learning. The
algorithm is shown in Figure 1, where the first call to DP is made with the
initial problem description S and a starting level of d = 0.

In the following, we associate with each run of DP a search tree, which is a
finite binary tree generated by the recursive calls of the case splitting step.
The nodes of the tree represent execution states of DP with a fixed input clause
set S. We will label the outgoing edges of each node with the literal L, resp.
L, which is conceptually added to S to generate the new subproblem. Figure 2
depicts such a search tree.

Dynamic learning aims at reducing the search space by adding information
to the problem instance’s clause set which is derived during the search. This
works as follows: As soon as DP reaches a leaf of the search tree which is not a
solution (i.e., when an empty clause is found), the reason for the generation of
the empty clause (or conflict) is analyzed [24]. Often, not all selected splitting
literals Ld are a necessary condition for the conflict to emerge, and therefore we
obtain a set Ld1, . . . , Ldk

of remaining literals whose simultaneous satisfaction
is a sufficient condition for the conflict. By adding the conflict-induced clause,
also called lemma, CC = {Ld1, . . . , Ldk

} to the clause set, we can thus prevent
a useless repeated search of the same subtree in other regions of the search
space. We will not describe in detail how the literals evoking a conflict are
computed, but refer the reader to the literature instead (see for example [24]).

Adding all conflict clauses can result in an exponential blow-up of the clause
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set. Therefore it is common practice to limit the addition of clauses to those
containing less than a threshold number of literals. The use of this simple size
parameter is justified by the fact that smaller clauses have the potential to
cut off larger fractions of the search space: a clause of length n can truncate
up to 1

2n of the search space.

3 Parallel SAT Checking with Distributed Dynamic Learning

3.1 Basic Problem Decomposition Technique

For the parallel execution of the DP algorithm the search space has to be
divided into mutually disjoint portions to be treated in parallel. We adopt a
dynamic search space splitting technique proposed by Zhang et al. [36] which
is based on the notion of a guiding path. A guiding path describes the current
state of the search process. More precisely, a guiding path is a path in the
search tree from the root to the current node, with additional labels attached
to the edges. Each level of the tree where a case splitting literal is added to
the clause set S, i.e. each (recursive) call to the DP procedure, corresponds to
an entry in the guiding path, and each entry consists in turn of the following
information:

(1) The literal Ld+1 which was selected at level d.
(2) A flag indicating whether we are in the first or in the second branch. We

use B to indicate the first branch, where backtracking is needed, and N
to indicate the second branch, where no backtracking is needed.

Each entry in the guiding path with flag B set is a potential candidate for a
search space division, as the sequential search has to backtrack to this point
and examine the second branch later. The whole subtree rooted at the node
corresponding to this entry can thus be examined by another independent
task, where at the same time the first task switches the flag in its guiding
path from B to N. The second recursive call of the DP procedure is only
executed if the backtrack flag is set to B.

As an example, assume that the search process has reached the state indicated
by the marked guiding path in Figure 2. In this situation a new task may
be started with literal x set to true, as this part of the search tree has not
been examined so far. So by starting a new task with an initial guiding path
of ((x, N)) we start a parallel search of independent subtrees. The spawning
task can proceed with its search, after having changed its guiding path from
((x, B), (y, N), (z,B)) to ((x, N), (y, N), (z,B)). It has proved advantageous to
choose for splitting purposes the backtracking node that is closest to the root
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Fig. 2. Guiding Path ((x, B), (y, N), (z, B)), Left-to-right Search Tree Traversal

of the search tree, i.e. to select i in such a way that fj = N for all j < i.

The guiding path approach allows dynamic problem decomposition, as at any
point in time during the search any task may decide to further split its portion
of the search space. Moreover, the selected literals coincide with the selections
of the sequential version—at least in the absence of dynamic learning. Ap-
proved literal selection strategies may therefore be carried over to the parallel
version of the DP algorithm. We have modified algorithm DP to be started at
an arbitrary point in the search tree, specified by an initial guiding path.

3.2 Distributed Learning

For a distributed parallel version of the DP algorithm with dynamic learning,
splitting the search space is only one problem to be settled. The other one
is to find a suitable scheme for distributing newly gained knowledge. Such a
scheme has to decide about questions such as:

• When should knowledge be exchanged between two tasks?
• Which newly derived facts should be made available to other tasks?
• Which knowledge is relevant and should be integrated into a task’s clause

set?

For all of these questions side conditions have to be considered, such as network
bandwidth and time to assemble and incorporate new knowledge.

The simplest schema for distributed learning is to have all tasks working inde-
pendently and to exchange no knowledge at all. This scheme has the advan-
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tage of being very simple (to implement, too), but it suffers from the drawback
that important knowledge may be utilized incompletely. This holds particu-
larly when learning has a considerable effect, as is the case with structured
real-world instances of the SAT problem.

Our approach is to exchange selected knowledge—in the form of newly derived
lemmas (conflict clauses)—between the nodes of the distributed environment.
The lemmas that are made available to other tasks are selected using one
simple criterion: the clause length. All lemmas with fewer than a fixed number
of literals are offered to all other tasks. This policy is consistent with the
schema applied for deciding the lemmas to be added to the clause set in the
sequential algorithm (see Section 2.2). In order to determine an appropriate
value for this size parameter we conducted experiments, which are reported
in Section 5. When inserting foreign lemmas into a task’s clause set, these
are filtered, and only those lemmas are incorporated that are not subsumed
by the task’s initial guiding path. This prevents insertion of lemmas that are
superfluous for the currently examined part of the search space.

3.3 Parallel Programming Models and Implementation Concepts

Since the dynamic learning process represents an orthogonal procedure to the
search process in the sequential algorithm, it is natural to also separate both
processes in the parallel algorithm. Thus, the parallel execution is organized
in two different logical layers. On the first layer, a parallel search process is
carried out, while on the second layer the exchange of newly created knowledge
between the processors is accomplished.

In this section the selection of suitable parallel programming models and the
resulting conceptual parallel organization of the two logical layers is discussed.
Section 4 gives further details of the actual implementation of both layers using
the DOTS parallel system platform.

Many parallel programming models have been proposed in the past [32,2]. Be-
sides the different levels of abstraction they provide, they also differ with re-
spect to their applicability to specific problem domains. Subsequently, we iden-
tify specific requirements for the parallelization of our algorithm and choose
suitable parallel programming models.

3.3.1 Parallel Search

Using the guiding path technique, it is easily possible to create disjoint sub-
problems for carrying out a parallel search. But it is in principle impossible to
estimate the run-time of a subproblem, since the extent of problem reduction
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delivered by the constraint-propagation and especially by the dynamic learn-
ing process cannot be predicted. Especially when dealing with SAT encodings
of real-world problems, the run-times of the created subproblems differ con-
siderably. This means that for the realization of the parallel search process
on the first logical layer, the programming model has to support task parallel
programs exhibiting highly irregular workloads and resulting in highly irregu-
lar communication patterns. In particular, it should be possible to efficiently
implement the presented dynamic search space splitting technique.

The application of higher level parallel programming models which are sup-
ported by parallelizing compilers is mainly restricted to regular applications
and thus not possible in our case. Also, lower level models like message passing
are not well suited for the efficient parallelization of applications with highly
irregular communication structures, because for every send primitive also a
corresponding receive primitive has to be executed. The explicit placement of
these receive statements in the program code turns out to be difficult when
dealing with highly irregular communication patterns.

The multithreading programming paradigm, located at a medium level of ab-
straction, provides transparent synchronization on the receiver side and hides
communication by an argument-result abstraction. It turned out to be a well
suited model for the parallelization of highly irregular applications. Moreover
using this parallel programming model, different load balancing strategies can
be applied orthogonally.

Multithreaded computations can further be classified according to the number
and course of data-dependency edges present in the execution graph of a com-
putation [7]. In simple multithreaded computations (also called asynchronous
procedure calls or fork/join computations) each thread produces one result
which is consumed by its parent. In fully strict multithreaded computations a
thread can produce an arbitrary number of results, consumed by its parent.
The more general strict multithreaded computations allow that the results of
a thread can be consumed by an ancestor of the thread in the activation tree.
(Further details on this classification can be found in [7].)

The strict multithreading model is very well suited for implementing the par-
allel DP search procedure within a scalable dynamic master-slave approach.
Dynamic problem decomposition is achieved by dynamically creating new
threads, where a parent thread assigns a portion of its own search space to its
child by applying the described search space splitting technique, and continues
the search in its (reduced) search space. Both, parent and child, can create ad-
ditional threads to further increase the available parallelism. All threads pass
the result of their search process directly to the master thread. The master
thread only spawns the initial thread and subsequently collects the results of
all dynamically generated threads until a model is found or all created threads
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have finished their search without finding a model.

3.3.2 Knowledge Exchange

To establish a global learning process considering all generated knowledge,
the lemmas have to be exchanged between the nodes. Since at every leaf in
the search tree a conflict analysis is carried out, a vast number of lemmas are
generated at each node. This makes the exchange of all created lemmas among
all nodes difficult, if bandwidth limitations of the network exist or when a large
number of nodes are used. Thus lemmas must be filtered at the source, and the
underlying programming model used for implementing the lemma exchange
should support such a selection process.

In case of a parallel computer with physical shared memory, the knowledge
exchange can be carried out by maintaining a shared clause store object into
which all created lemmas are inserted and from which they are selectively read
by all prover instances. Using distributed shared memory models this concept
could also be used in distributed architectures. However, this approach suf-
fers from limited scalability. Another possibility would be to use broadcasting
capabilities of message passing environments, but filtering at the source is
difficult to realize with this technique.

In our approach we use (a simple form of) mobile agents [34] to gather suitable
new knowledge on other nodes. For each SAT prover instance, a mobile agent is
created that visits the nodes in the distributed system. The agents gather new
lemmas according to the criteria specified in Section 3.2. Whenever the mobile
agent delivers the collected lemmas on its home node, information about the
current state of the local search process is passed to the agent and is used
in the selection process on its next trip to the other nodes. The mobile agent
paradigm is distinguished by its high scalability, thus enabling the deployment
of our algorithm in large scale parallel environments, e.g. computational grids.

4 Implementation on the DOTS parallel platform

DOTS (Distributed Object-Oriented Threads System) is a system platform for
building and executing parallel C++ programs that integrates a wide range
of different computing systems into a homogeneous parallel environment. Al-
though DOTS was originally designed for the parallelization of algorithms from
the realm of symbolic computation [6], it has also been used in other appli-
cation domains like parallel computer graphics [26]. The primary design goal
of DOTS is to provide a flexible and handy tool for the rapid prototyping of
algorithm designs especially for highly irregular symbolic computations, e.g.
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in data-dependent divide-and-conquer algorithms.

DOTS supports a wide range of hardware and software platforms [4]. Up to
now, it has been deployed on (heterogeneous) clusters composed of the follow-
ing platforms:

• Microsoft Windows 98/NT/2000/XP
• Solaris, IRIX, AIX
• FreeBSD, Linux
• QNX Realtime Platform and
• IBM Parallel Sysplex Clusters (clusters of IBM S/390 (respectively zSeries)

mainframes running under OS/390) [5]

4.1 System Overview

4.1.1 DOTS APIs

DOTS applications can be based on several APIs, see Figure 3. It is possible
to mix primitives from different APIs within an application.

Task API. The Task API represents the basic API layer of DOTS on which
the other APIs are based. It provides support for DOTS task objects, which
are instances of application specific classes that are derived from the base class
DOTS Task and implement a run() method. The code provided in the run()
method is executed on its own thread when the task object is scheduled for
execution (see Section 4.1.2). The base class DOTS Task also provides methods
for explicit program controlled migration of the task object in the case of a
distributed execution of the parallel application.
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Autonomous Tasks API. The Autonomous Tasks API can be used to
create task objects that operate as mobile agents. In contrast to normal task
objects, the execution of an autonomous task is not subject to the load distri-
bution mechanism of DOTS. Instead, its execution locations can be explicitly
determined by the programmer. For facilitating the control of autonomous
tasks, the API provides higher level migration primitives, e.g. for organizing
round trips of mobile agents within the distributed environment.

Active Message API. The Active Message API provides support for object-
oriented message passing. After a message object has been transferred to its
destination node it becomes an active object i.e., a new thread is created that
executes application specific code contained in the message object.

Thread API. The Thread API offers support for strict multithreading. To
facilitate the parallelization of C++ programs using this programming model,
the Thread API is enhanced with object-oriented features, like argument and
result objects for threads. The basic primitives provided by the Thread API
are dots fork and dots hyperfork for thread creation, dots join for synchroniz-
ing with the results computed by other threads (which are returned using
dots return), and dots cancel for thread cancellation.

Each thread of a computation is assigned to a thread group. Depending on
the primitive used for its creation, a thread is placed explicitly or implicitly
into a thread group. If a thread is created using the dots fork primitive, it is
explicitly placed into a specified thread group. If a thread is created using
dots hyperfork, it is implicitly placed in the same thread group as its closest
ancestor in the thread activation tree which has been created using dots fork.

When dots join is called on a thread group, join-any semantics is applied:
The first result which becomes available from a thread in the given group
is delivered, regardless of whether the thread has been placed explicitly or
implicitly into the group. If no result is available, the calling thread is blocked
until one thread of the group delivers a result.

The Thread API is implemented on top of the Task API by defining a special
class of DOTS task objects called DOTS Thread, which encapsulates argument
and result objects and additional information like the procedure to be exe-
cuted.

4.1.2 DOTS Architecture

The major design goal for the DOTS architecture is the strict separation of ex-
ecution and distribution aspects. The benefits of this approach are that DOTS
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applications can be efficiently executed on SMPs as well as on clusters with-
out any modifications (e.g. recompilation). Moreover, custom load distribution
schemes and new functionality (e.g. checkpointing) can easily be integrated.

Figure 4 shows the main functional units of the architecture. DOTS tasks are
executed within the Execution Unit (shown in Figure 5). They can be executed
in immediate mode or in queued mode. In the former case, an OS native thread
is created that executes the run() method of the task object. DOTS tasks that
are intended for queued execution are placed into a task queue. A pool of
(pre-forked, OS native) worker threads dequeue task objects from the queue
and execute the corresponding run() method. The number of worker threads
can be determined by the programmer. Normally, for each node the number of
available processors is chosen. However, in some cases an oversaturation with
worker threads can be desirable, so that communication latency is implicitly
hidden by running another thread. After the execution of a DOTS task object
is completed, it is placed into a ready queue. Ready queues correspond to
thread groups on the API level; for each thread group that is created, a ready
queue is allocated within the execution unit. The ready queue is removed from
the execution unit when the corresponding thread group is canceled.

To support the execution of DOTS tasks in a distributed environment, the
DOTS architecture includes additional components. The Task Transfer Unit
transfers (serialized) task objects between queues of execution units residing on
different nodes. Task transfer is needed for task migration or load distribution.
The Load Monitoring Framework traces all events concerning the execution of
DOTS tasks and provides status information like the current load or the current
length of the task queue. Based on the Load Monitoring Framework, different
load distribution strategies can be integrated. The occurrence of an event is
transformed by the Load Monitoring Framework into a call of a corresponding
event handler method that can be (re-)implemented by a load distribution
strategy class derived from the Load Monitoring Framework. In turn, event
handler methods initiate appropriate actions, like task transfer or sending
requests for task transfer. As an example for the usage of the Load Monitoring
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Framework, Figure 6 shows the code for a simple randomized work-stealing
distribution scheme. Using the Load Monitoring Framework, the programmer
can easily register custom load distribution schemes within an application
without any modification of DOTS internals.

Basic distributed schemes based on sender initiated work-sharing or receiver
initiated work-stealing are predefined. The target, resp. victim node, can be
selected randomly, by round-robbin selection, or by an application specific
strategy.

4.2 Implementation of the parallel SAT checker using DOTS

In this section, we present the implementation of the two logical layers of our
parallel SAT checker (see Section 3.3) using DOTS.

4.2.1 Parallel Search with DOTS Threads

To initiate the parallel search process the main thread forks one DOTS thread
that has the entire search space assigned. During the whole computation all
created threads periodically monitor the length of the local task queue. If a
thread sees that the length of the task queue falls below a given threshold, it
forks a new DOTS thread. The parent thread splits off a region of its search
space (see Section 3.1) and assigns it to the new thread. To prevent the un-
controlled splitting-off of very small fractions of the search space, a predefined
time interval has to elapse before the next split can be carried out by the
thread. The newly created DOTS task object is queued and can be executed
by a local worker thread or can be transferred to other nodes.

The above splitting procedure generates subproblems on demand. This ensures
that new subproblems are generated on the one hand during the initialization
phase of the computation to exploit the available processing capacity and
on the other hand every time a subproblem has been completely processed
without finding a solution.

After forking the initial DOTS thread, the main thread immediately calls
dots join to wait for all subsequently created threads. All DOTS threads (ex-
cept the initial one) are created with the dots hyperfork primitive. This has
the effect that these threads can be joined by the main thread (and are not
to be joined by their actual parent threads). The result of a thread indicates
whether a solution was found within the assigned search region. The process-
ing is completed either if all created DOTS threads have been joined (indicated
by a return value of 0 from dots join) without returning a solution, or when
the first DOTS thread is joined that has found a solution. In the latter case,
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#include "DOTS_Load_Monitoring_Framework.h"

class DOTS_Simple_Randomized_Workstealing_Strategy :
public DOTS_Load_Monitoring_Framework

{
public:

DOTS_Simple_Randomized_Workstealing_Strategy() {
// subscribe for exec_queue_min_threshold_event
// steal threshold: 0, queue check interval: 100 ms
set_exec_queue_min_threshold(0, 100);

}

void exec_queue_min_threshold_event_handler(void) {
// are there any other nodes?
if (DOTS_NODE_TABLE->get_size()<2)

return;

// create message containing own node ID
DOTS_Archive arch;
arch << DOTS_NODE_ID;
DOTS_Msg msg(DOTS_MSG_STEAL_TASK, &arch);

// choose victim node randomly
DOTS_Node_ID victim_id;
do {

victim_id = rand() % DOTS_NODE_TABLE->get_size();
} while (victim_id == DOTS_NODE_ID);

// send message to victim node
msg.send(victim_id);

}

void message_handler(DOTS_Msg* msg) {
// unpack message
DOTS_Archive* arch = msg->get_archive();
DOTS_Node_ID dest_id;
*arch >> dest_id;

// try to transfer task to destination node ID
DOTS_TASK_TRANSFER_UNIT->transfer_task(dest_id);

delete msg;
}

};

Fig. 6. A Simple Randomized Load Distribution Strategy
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all remaining DOTS threads are immediately canceled.

As load distribution scheme, task stealing with randomized victim selection
(similar to the example code given in Figure 6) was used. It has been shown
that applying a randomized work-stealing strategy to distribute the load in
backtrack search algorithms is likely to yield a speedup within a constant factor
from optimal (when all solution are required) [22]. Since this load distribution
scheme involves only local information the scalability of the parallel search
algorithm is ensured.

4.2.2 Knowledge Exchange using DOTS Autonomous Tasks

For each available processor on a node a Clause Store object is created that
holds the set of clauses for a SAT checker instance. The clause set consists
of initial input clauses as well as lemmas generated by the associated SAT
checker. Lemmas can easily be exchanged between clause store objects residing
on the same node, using shared memory. Lemmas from clause stores on other
nodes are exchanged by employing DOTS autonomous tasks. In Figure 7 the
(simplified) code of an autonomous task is shown.

For each clause store object a DOTS autonomous task object is created that
acts as a mobile agent for gathering lemmas from other nodes. It visits all
nodes in a round robin fashion looking for new lemmas. Every time it is back
on its home node it inserts the collected lemmas into the local clause store.
Because of the huge amount of generated lemmas it is impossible to exchange
all lemmas in larger distributed systems. Therefore, agents gather only lemmas
that meet some criteria. As selection criteria the length of the lemmas and the
requirement that the considered lemma is not already subsumed is used. (If a
lemma is subsumed, it contains only information that is obviously irrelevant
in the part of the search space assigned to the agent’s associated SAT checker
task.) The description of which part the SAT checker task is currently working
on—in the form of a list of fixed literals—is transferred to the lemma exchange
agent every time the agent visits its home node.

5 Experimental Results

For a performance evaluation of our parallel approach to SAT checking with
dynamic learning, we carried out a series of run-time measurements in a cluster
composed of 24 SUN workstations. Each node of the cluster was equipped
with an UltraSparcII processor running at 500 MHz and 512 MByte of main
memory. All nodes were connected by a 100 Mbps switched Ethernet. Our
run-times and speedup values are based on measurements of the wall-clock
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class LemmaAgent : public DOTS_Autonomous_Task
{
private:

List<Clause> new_lemmas;
List<Literal> fixed_literals;

int max_length;

public:
run() {

if (home_node()) {
// deliver gatherd lemmas
CLAUSE_STORE.insert_new_lemmas(new_lemmas);

// get current state of search process
fixed_literals = PROVER.get_fixed_literals();

// continue trip
travel_to_next_node();

}
else {

Clause l;

// gather new lemmas
while ((l = CLAUSE_STORE.read_new_lemma()) != 0) {

// discard if subsumed or max. length exceeded
if (!l.subsumed(fixed_literals) && l.length() <= max_length)

new_lemmas.append(l);
}

// continue trip
travel_to_next_node();

}
}

};

Fig. 7. Simplified Code of the Lemma Agent

time of program runs. Since it turned out that the parallel execution of the
SAT checker with dynamic learning exhibits a significant non-deterministic
behavior in some cases, we performed ten individual parallel runs for each
setting. In addition to the arithmetic mean of the measured results we also give
the minimum and maximum values, if the individual values show a significant
spread.

As benchmarks we used the following SAT encoded problems of both theoret-
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ical and practical importance:

• QG7-12: quasigroup existence problem
This problem encodes a quasigroup existence problem of the kind QG7 given
by Fujita et al. [19]. A quasigroup is a cancellative finite groupoid consisting
of a base set S and a binary multiplication ∗. The multiplication table is
also known as a “latin square”, i.e. each row and column is a permutation
of the base set S. QG7-x asks for the existence of a quasigroup of order x
with the additional property that ((x ∗ y) ∗ x) ∗ y = x holds for all x, y. As
no quasigroup of order 12 with this property exists, QG7-12 is unsatisfiable.

• DES: logical cryptanalysis
This benchmark stems from the area of logical cryptanalysis [25] and en-
codes the problem of finding an encryption key given three plaintext and
three ciphertext blocks that were produced using three rounds of the DES
algorithm. As there is (at least one) key matching the plaintext/ciphertext
blocks, the DES problems are satisfiable.

• LONGMULT: hardware verification
This benchmark problem is taken from the realm of hardware verification
using bounded model checking [3]. It represents a boolean formula express-
ing the equivalence of two different 16-bit multiplier hardware designs. Using
the usual problem encoding technique of bounded model checking, equiva-
lence of hardware designs is represented by unsatisfiability.

Table 1 shows the the sequential run-times of the benchmark problems with
and without dynamic learning measured on one cluster node. The computation
time of all benchmark problems can be reduced by dynamic learning. While the
effect imposed by dynamic learning is moderate for the quasigroup existence
problem, the run-time of the other considered benchmark problems can be
dramatically reduced using this technique.

Benchmark satisfiable ? sequential time sequential time

without learning with learning

QG7-12 no 5,203 sec 2,772 sec

DES yes >7 days 2,984 sec

LONGMULT no 99,009 sec 4,313 sec
Table 1
Sequential run-times of the benchmarks

5.1 Evaluation of the Work-Stealing Load Sharing Strategy

In a first series of measurements the performance of our work-stealing load
sharing strategy was analyzed and then optimized for subsequent measure-
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ments. In order to get suitable data for this analysis, we used as input the
QG7-12 benchmark where among the considered benchmarks the effect of
dynamic learning is the smallest and performed no lemma exchange. This
strategy minimizes both, the non-determinism of parallel runs (see also Fig-
ure 13 below), and the overhead imposed by the mobile agents on the parallel
search.

5.1.1 Work-Stealing Threshold Parameters

The work-stealing load sharing strategy is controlled by the value of two dif-
ferent threshold parameters:

• Split-Threshold
When the length of the local task queue is less than, or equal to, this thresh-
old, a search space split is performed to produce an additional thread (which
can be stolen by other nodes).

• Steal-Threshold
When the length of the local task queue is less than, or equal to, this thresh-
old, the load distribution system tries to steal a thread from the run queue
of a randomly chosen victim node.

Figure 8 shows the obtained speedups and the number of dynamically gen-
erated threads for different values of the Split-Threshold and Steal-Threshold
parameter using 24 nodes with one worker thread on each node. In Figure 9
the results of the corresponding measurements using two worker threads per
node is given.

Discussion
The speedups obtained using one worker thread ranged from 15.7 to 18.1 and
with two worker threads per node they ranged from 14.9 to 17.6.

The best speedup could be achieved by using a value of 0 for the Split-
Threshold and the Steal-Threshold parameter, both when using one or two
worker threads. Also the number of created threads is the smallest with this
parameter setting.

Using a larger value for the Steal-Threshold causes additional task trans-
fers over the network leading to smaller speedups. Also, using a larger Split-
Threshold causes the creation of a larger number of threads, particularly for
smaller values for the Steal-Threshold parameter. Thus, the strategy of try-
ing to keep a larger number of parallel task available turned out to be not
beneficial for this application.

Using two worker threads per node decreases the performance of the parallel
application. The additional synchronization overhead needed when using two
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Fig. 8. Speedups and number of generated threads for QG7-12 using different
work-stealing thresholds with one worker thread per node
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Fig. 9. Speedups and number of generated threads for QG7-12 using different
work-stealing thresholds with two worker threads per node

prover threads outweighs the performance improvements obtained by overlap-
ping computation and communication. In general it turned out that due to
the internal multithreaded implementation of the communication system of
DOTS the effect of using a larger number of worker threads is only marginal.
Despite the high variability in the number of generated threads, the resulting
speedups are relatively stable. E.g., for the parameter setting that results in
the highest thread load when using one worker thread, still about 87 percent
of the maximal speedup could be obtained.

According to the results of this test, for all subsequent measurements the value
of the Split-Threshold and the Steal-Threshold parameter were set to 0 and one
worker thread per node was used.

5.1.2 Work-Stealing Timing Parameters

After finding the optimal thresholds for the work-stealing load sharing strat-
egy, we studied the influence of the following related timing parameters on the
speedup and the number of created threads.
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Fig. 10. Speedups and number of generated threads for QG7-12 using different
work-stealing timing parameters

• Split-Wait Time
This is the minimal time interval that has to elapse between consecutive
search space splits on a node.

• Queue-Check Interval
This parameter controls how frequently the local task queue is checked
whether its length has fallen below the given threshold parameter.

Figure 10 shows the speedups and number of generated threads using different
combinations of the described timing parameters.

Discussion
For a wide range of parameter settings the obtained speedups differ only
marginally (ranging from 17.8 to 18.1), while the number of generated threads
is affected by these parameters to a greater extent. Only when using a compar-
atively large queue check interval of 1000 ms the speedups drop significantly
to values in the range between 14.1 to 14.9, and the largest number of threads
occur. In this case, mainly at the end of the computation, many nodes ran idle
for a larger time interval leading to a poor parallel efficiency. Moreover, only
a few nodes could be chosen as victim for work-stealing. Consequently, these
nodes had to perform many search space splits within a short time interval.
The resulting small subproblems amplified the described effect, also leading
to a larger number of generated threads.

For all further measurements a Split-Wait Time value of 10ms and a Queue-
Check Interval value of 10ms were chosen since for these values the speedup
obtained was the highest.
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5.2 Evaluation of Distributed Learning

For analyzing the effects of knowledge exchange realized by our mobile agents
approach, we studied for each benchmark the influence of the maximum length
of the lemmas to be gathered by the mobile agents. This parameter mainly
influences the footprint (the size) of the mobile agents. On the one hand,
smaller values for the maximum length lead to faster round trip times of the
agents, so that the transferred new knowledge is rapidly available on other
nodes of the distributed system. Also the overhead imposed by the mobile
agents on the parallel search process in terms of cpu-time and bandwidth
consumption can be reduced. On the other hand, by choosing a too small size
for the lemmas to be exchanged, too many generated lemmas are filtered out
from the global learning process, so that important knowledge may not be
provided to other nodes, leading to a larger degree of redundant searching.

Figure 11 shows the speedups and the total size of the search tree (given in the
number of leaves of the tree) for the LONGMULT benchmark using different
maximum length values. A maximum length of 0 represents the case where no
lemmas are exchanged at all, and consequently no mobile agents are created.
Figure 12 and Figure 13 present the corresponding results for the DES and
QG7-12 benchmarks.

Discussion
Coordinating the distributed learning process with our mobile agent approach
leads to significantly better speedup values and to smaller search trees in all
our benchmarks. Moreover, it could be observed that the maximum size of the
collected lemmas influences the obtained speedups as well as the size of the
search tree for all benchmarks. In particular, this effect is very pronounced for
the DES benchmark.

It turned out that for all benchmarks the maximum size of exchanged lemmas
that leads to the best speedups is smaller than the maximum lemma size which
results in the smallest search tree. By choosing a larger size, more lemmas are
selected and exchanged, which on the one hand can further reduce the search
tree since more knowledge is distributed. But on the other hand, the clause
set gets bigger, slowing down the constraint propagation process of the DP
algorithm and thus decreasing the overall performance. Moreover the resource
consumption of the agents is increased, additionally slowing down the parallel
search.

Also, super-linear speedups could be observed for the LONGMULT and the
DES benchmarks. One typical source of super-linear speedups are system ef-
fects such as cache or memory effects: due to the problem decomposition the
resulting smaller subproblems can often be processed more efficiently. In our
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Fig. 11. Influence of Lemma Exchange for the LONGMULT benchmark
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Fig. 12. Influence of Lemma Exchange for the DES benchmark
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Fig. 13. Influence of Lemma Exchange for the QG7-12 benchmark

application this is unlikely to be the case since for treating a subproblem a
complete prover instance is needed which requires the same resources as in
the sequential execution.

Another typical source of super-linear speedups are algorithmic effects. In
parallel search processes these occur, if the processing of a parallel subproblem
quickly leads to a solution. Since the DP algorithm is essentially a search
algorithm, super-linear speedups can occur due to this parallel search effect,
if the considered problem instance is satisfiable.
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Parallel dynamic learning processes are another potential source for algorith-
mic super-linear speedups. Compared to the sequential execution, it is possi-
ble that in the parallel case additional important knowledge becomes available
when treating a particular region of the search space. Thus, the search tree
can be reduced to a greater extent than in the sequential case.

This observation provides an explanation of the occurrence of super-linear
speedups in the parallel execution of the LONGMULT benchmark. For the
DES benchmark, super-linear speedups are the result of a superposition of
both parallel search and parallel learning.

6 Related Work

6.1 Parallel SAT Checking and Combinatorial Optimization

Böhm and Speckenmeyer presented a parallel SAT-solver for a Transputer sys-
tem consisting of 256 processors [8]. Their work concentrates on aspects of the
parallelization of SAT checking for hard randomly generated SAT instances.
The SAT algorithm executed on each processor is based on the classical DP
algorithm without conflict analysis and lemma generation and consequently
no inter-node learning process is realized in this work. A dynamic problem
decomposition technique similar to the guiding path technique is used. The
employed load balancing scheme depends on a workload measure of subprob-
lems which is based on the number of unset variables of the subproblem. This
approach is feasible for random SAT instances where the extent of problem re-
duction delivered by the constraint-propagation step of the DP algorithm can
be assumed to be the same for all subproblems. However, for many real-world
SAT instances, this assumption can not be made. Therefore our approach uses
a dynamic receiver initiated load distribution scheme in order to better cope
with the highly irregular workload when treating real-world SAT instances.

Zhang’s PSATO [36] is a distributed parallel propositional prover for networks
of workstations, based on the sequential prover SATO. Compared to PSATO,
our work implements a distributed dynamic learning process and applies more
sophisticated load distribution schemes leading to better scalability. PSATO
also employs a master-slave approach for carrying out the parallel search. In
contrast to our work, the master is additionally responsible for performing
search space splitting and scheduling of the created subproblems. In PSATO,
new tasks are not created on demand (when a processor is available), but
the following procedure is applied: After a predefined time interval a slave
terminates its computation and reports its current guiding path to the master.
If there is another idle processor, the master performs a search space split and
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assigns the two resulting subproblems to the idle processors. Due to this highly
centralized policy of dynamic problem decomposition scalability is limited,
especially when treating highly irregular problem instances.

In the neighboring field of combinatorial optimization, parallelization is also an
active area of research. Grama and Kumar [20] give a comprehensive overview
of the state-of-the-art in this field. They report on the parallelization of differ-
ent search algorithms, the role of heuristics, and the phenomenon of speed-up
anomalies.

Habbas et al. [21] examine different load balancing strategies for parallel for-
ward search with conflict based backjumping. Search algorithms of this kind
frequently occur in constraint satisfaction problems (CSPs) and are similar to
the DP algorithm with conflict analysis presented here. In the CSP commu-
nity, the analogy to lemma generation is no-good generation, but this is not
part of Habbas’ analysis. So, in their parallel algorithms the focus is on load
balancing, and distributed learning is not considered.

Brüngger’s ZRAM search library [10] offers a framework for parallel search.
In their work they exemplarily apply their system to the traveling salesman
problem (TSP) and to the quadratic assignment problem (QAP). Their li-
brary offers different parallel search engines, for example for branch and bound
search, and includes a search space estimator for irregular search problems,
which is based on ideas of Knuth [23]. In their framework, communication
between different tasks is done exclusively for load distribution, so the focus
again is not on distributed learning.

6.2 System Platforms for Multithreading in Distributed Systems

In Section 3.3 we have stated the general suitability of multithreading for the
parallelization of highly irregular combinatorial search problems. In the last
decade, many distributed multithreaded environments for high performance
computing have been developed. In this section we carry out a classification
of these approaches into three categories according to functional aspects and
the intended purpose of the system platform. For the category to which DOTS
belongs, we make a more detailed comparison with other systems.

Shared Memory Multithreading based on Distributed Shared Mem-
ory (DSM)
Here, the common goal of approaches to distributed multithreading is to use
the shared memory multithreading programming model, e.g. provided by many
modern operating systems, on parallel architectures with distributed mem-
ory as transparently as possible. Typical representatives of this category are:
DSM-Threads [28], Millipede [18], or DSM-PM2 [1].
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Due to the consistency problem caused by the replication of shared data ob-
jects, all approaches to DSM multithreading have to cope with the problem
of combining efficiency and programmability (transparency) on large scale
distributed (heterogeneous) parallel machines [33]. In principle, strict multi-
threading and mobile agents could be realized using DSM, if the stated draw-
backs are not relevant for the intended application area. Since SAT checking
does not further profit from DSM, we argue that it is better to use DOTS,
whose system model supports larger scale heterogeneous distributed systems.

HPC Middleware for Integrating Communication and Multithread-
ing
The system platforms in this category pursue the tight integration of commu-
nication and multithreading. However, the intention of the realized parallel
programming model is not to carry out communication completely transpar-
ently. Examples of members of this category are Nexus [17], Panda [31], or
Athapascan-0 [9].

These system platforms are primarily designed to be used as compiler targets
or as middleware for building higher-level parallel system platforms. Due to
their general nature, strict multithreading as well as mobile agents could be
realized with all of these platforms. But using their low level programming
models would lead to relatively complex programs when implementing both
strict multithreading and autonomous tasks.

Platforms Supporting the Fork/Join Multithreading Programming
Model
Systems in this category are most similar to DOTS; they realize distributed
multithreading by employing the fork/join parallel programming model or
generalizations thereof, like strict multithreading (see Section 3.3.1). This ap-
proach to distributed multithreading carries out communication completely
transparently by using argument-result semantics. However, communication
between the threads of a computation is restricted to specific points during
the execution of a thread. The simplest form are asynchronous remote pro-
cedure calls that allow the passing of one argument from the parent thread
to the child thread and the communication of one result back to the parent
thread. More general models, like strict multithreading, additionally allow the
transfer of possibly several results to any ancestor of a thread in the call tree.

DTS [11] (which is the predecessor of DOTS) realizes asynchronous remote
procedure calls in C and Fortran. No support for object-oriented programming
was provided in DTS, and its deployment was limited to distributed systems
composed of UNIX nodes.

Cilk [30] is a language for multithreaded parallel programming that represents
a superset of ANSI C. It uses pre-compilation techniques for static code in-
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strumentation in order to support the Cilk runtime system. There exists a
prototype implementation of a distributed version of Cilk, called distributed
Cilk [16], that spans clusters of SMPs. DOTS is library based and therefore
avoids typical problems of systems that extend standard languages, like the
lack of standard development tools (e.g. debuggers). Moreover, DOTS is based
on C++ and supports object-oriented programming. Since distributed Cilk is
currently available only on a few platforms, its usability in highly heteroge-
neous distributed environments is limited.

Virtual Data Space (VDS) [15] is a load balancing system for irregular ap-
plications also supporting strict multithreading. It is implemented in C and
therefore provides no direct support for object-oriented programming. It is
not available for a wider range of common platforms, resulting in a limited
support for heterogeneous high performance computing.

PM2 (Parallel Multithreaded Machine) [29] is a distributed multithreaded
environment designed to efficiently support irregular parallel applications on
distributed architectures. A key feature of PM2 is its thread migration mech-
anism.

While all these system platforms provide for fork/join multithreading in dis-
tributed systems, only VDS and PM2 could also be used to implement the
autonomous tasks that act as mobile agents supporting distributed learning.
Their implementation could be based on the VDS task model resp. on the
sophisticated migration facilities of PM2.

DOTS is distinguished from these systems by its native support for object-
oriented programming, its support for highly heterogeneous environments, and
by its tight integration of strict multithreading and autonomous tasks realized
by its basic task execution model.

7 Conclusion

In this paper we presented the parallelization of the state-of-the-art SAT
checking algorithm which enhances the classical Davis-Putnam-Logemann-
Loveland SAT checking procedure with dynamic learning techniques. Our
approach uses strict multithreading to cope with the highly irregular search
process and employs a randomized work stealing strategy. The knowledge ex-
change is carried out by using the mobile agent paradigm.

The main contribution of this paper is the beneficial combination of parallel
combinatorial search with distributed learning. We thus achieve an improved
global learning effect on a set of collaborating search tasks. Our experiments
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indicate that distributed learning can result in considerable speed-up com-
pared to independently learning individuals.

As the learning effect helps reveal the internal structure of a problem instance,
it is especially well-suited for structured real-world problems. This is the case,
for example, in hardware verification, where SAT algorithms (as the core of
a bounded model checker) are increasingly employed, and where a parallel
approach allows further progress.

Research directions for the future may include adaptation to large-scale ap-
plications by employing grid computing, as well as a thorough theoretical
investigation of the effects of distributed learning.
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[31] Rühl, T., Bal, H. E., Benson, G., Bhoedjang, R. A. F., and
Langendoen, K. Experience with a portability layer for implementing parallel
programming systems. In Intl. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA’96) (Sunnyvale, CA, 1996), pp. 1477–
1488.

[32] Skillicorn, D. B., and Talia, D. Models and languages for parallel
computing. ACM Computing Surveys 30 (1998), 123–169.

[33] Tanenbaum, A. S., and van Steen, M. Distributed Systems – Principles
and Paradigms. Prentice-Hall, 2002.

[34] Woolridge, M., and Jennings, N. Intelligent agents: Theory and practice.
Knowledge Engineering Review 10, 2 (1995).

[35] Zhang, H. SATO: An efficient propositional prover. In Proc. 14th Intl. Conf.
on Automated Deduction (CADE-97) (1997), vol. 1249 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 272–275.

29



[36] Zhang, H., Bonacina, M. P., and Hsiang, J. PSATO: A distributed
propositional prover and its application to quasigroup problems. Journal of
Symbolic Computation 21 (1996), 543–560.

30


