Hochschule Reutlingen
Reutlingen University

g8

Parallel and Distributed Computing Group
Department of Computer Science
Reutlingen University

An object-oriented platform for distributed high-
performance symbolic computation

Wolfgang Blochinger, Wolfgang Kichlin, Christoph Ludwig
and Andreas Weber

(Accepted Peer-Reviewed Manuscript Version)

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

The formal publication is available at:
https://doi.org/10.1016/S0378-4754(99)00049-X

BIBTEX

@article{Blochinger1999,
author = "Wolfgang Blochinger and Wolfgang Kiichlin and Christoph Ludwig
and Andreas Weber",

title = "An object-oriented platform for distributed high-performance
symbolic computation”,

journal = "Mathematics and Computers in Simulation",

volume = "49",

number = "3",

pages = "161--178",

year = "1999",

issn = "@378-4754",

doi "https://doi.org/10.1016/S0378-4754(99)00049-X",

url "http://www.sciencedirect.com/science/article/pii/S©37847549900049X"


http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/S0378-4754(99)00049-X

An Object-Oriented Platform for Distributed
High-Performance Symbolic Computation

Wolfgang Blochinger Wolfgang Kiichlin Christoph Ludwig
Andreas Weber !

Wilhelm-Schickard-Institut fir Informatik
Universitat Tubingen
Sand 13, D-72076 Tibingen, Germany
http://www-sr.informatik.uni-tuebingen. de

Abstract

We describe the Distributed Object-Oriented Threads System (DOTS), a program-
ming environment designed to support object-oriented fork/join parallel program-
ming in a heterogeneous distributed environment. A mixed network of Windows NT
PC’s and UNIX workstations is transformed by DOTS into a homogeneous pool of
anonymous compute servers forming together a multicomputer. DOTS is a com-
plete redesign of the Distributed Threads System (DTS) using the object-oriented
paradigm both in its internal implementation and in the programming paradigm
it supports. It has been used for the parallelization of applications in the field of
computer algebra and in the field of computer graphics. We also give a brief account

of applications in the domain of symbolic computation that were developed using
DTS.

Key words: distributed threads system, heterogeneous networks, Windows N'T
cluster, symbolic computation, elliptic curves method

1 Introduction

The Distributed Object-Oriented Threads System (DOTS) is a programming
environment for the parallelization of irregular and highly data-dependent
algorithms. It extends support for fork/join parallel programming from shared
memory threads to a distributed memory environment. DOTS works on the

1 Supported by Deutsche Forschungsgemeinschaft under grants Ku 966/4-1 and
Ku 966/6-1.
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principle that a forked thread can be executed on a remote machine, provided
its input and output parameters can be copied over the network and it does not
engage in shared memory communication. This programming paradigm can
be characterized as SPMD (single program, multiple data) with asynchronous
remote procedure calls.

In DOTS, each network node is a multi-threaded shared-memory multipro-
cessor (possibly consisting of a single processor). Under DOTS the network
again forms a symmetric multiprocessor. Together they form a hierarchical
multiprocessor. The idea is to support a uniform and well structured paral-
lelization paradigm on this machine. Large grained threads are to be forked
over the network, small grained ones over the processors in a shared memory
multiprocessor. Since each network node is to be oversaturated with threads,
communication latency is hidden implicitly by running another computation
thread in parallel.

The primary design goals of DOTS were on the one hand to facilitate the
transformation of existing sequential C++ Code into a distributed applica-
tion, and on the other hand to provide a flexible and handy tool for the
rapid prototyping of algorithm layouts and for the support of highly irregu-
lar symbolic computations, especially in data-dependent divide-and-conquer
algorithms. DOT'S is designed to be used where elaborate low-level code op-
timizations for parallelization are impractical, e.g. because the control flow is
data-dependent, the algorithm is too complex, or the application programmer
wants to focus on high-level algorithm or application development.

DOTS uses an object-oriented approach both in its internal implementation
and in the programming paradigm it supports. It provides a convenient way for
the object serialization of the parameter and result objects that are involved
in the distributed part of the computation.

DOTS has adopted many of the basic concepts introduced by its predecessor
system DTS [2]. The primary motivation for the development of DTS was
to extend the target platforms of the PARSAC-2 library [17,18] from shared
memory multiprocessors to a network of shared memory multiprocessors. Be-
sides being suitable for the realization of this initial goal, it turned out that the
distributed fork/join paradigm provided by DTS could successfully be used
for parallelizing many other applications.

This article will mainly focus on the more recent DOTS system. Section 2
gives a general overview of the software development process using DOTS.
In Section 3, we will deal with the design and implementation of the system.
Applications and performance measurements will be presented in Section 4. In
Section 5, DTS and its applications are described in a recapitulating fashion.
We conclude with a comparison with related work in Section 6.



2 Designing Distributed Applications with DOTS

2.1 Qverview of DOTS

DOTS consists of two main components: The DOTS run-time class library
and the so called DOTS Commander.

The DOTS Run-Time Class Library is a C++ class library that con-
tains classes and functions which are necessary for coding a DOTS ap-
plication. This library is to be linked with the user program.

The DOTS Commander is a program which controls the distributed com-
putation. It starts and terminates all processes on the different computers
that take part in the distributed computation. It also provides the user
interface.

In order to use DOTS for a distributed computation the following main steps
have to be carried out.

e Code parts suitable for distributed computations have to be identified and
have to be rewritten as static functions of the appropriate classes. The dis-
tributed computation of these functions has to be performed by forking and
joining DOTS threads. Forking instance methods is currently not allowed.
This would require a distributed shared object state model. Because of its
potential great system overhead, an implementation on the same level of
efficiency as the other parts of DOTS is one of the challenges for the further
development of DOTS. In DOTS, object state can easily be passed as an
additional argument object of the thread. This strategy also leads to a re-
duction of the communication overhead because unused parts of the object
state can be determined and do not have to be transferred.

e Code for the serialization of parameter objects has to be provided. DOTS
provides a good infrastructure to make this a straight-forward program-
ming task. Basically, all members of the parameter classes have to be listed
in a statement involving a DOTS_Archive class and operators for packing
(<<) and unpacking (>>). Using the template and operator overloading
mechanisms of C++, recursion through the member classes and picking the
appropriate objects for functions to be forked and joined is done automati-
cally by the DOTS library.

2.2 Object-Serialization

The remote execution of a DOTS thread implies the transmission of argument
and result objects over a network connection. This process requires the trans-



formation of the involved objects into serial data structures before transferring
them, and their reconstruction after the transmission from this serial repre-
sentation. The system class DOTS_Archive implements a suitable serial data
structure and contains predefined operators for packing (<<) and unpack-
ing (>>) all simple C++ data types into and from this structure. The class
DOTS_Archive supports computations in heterogeneous networks by automat-
ically converting the data into a standard representation within the serializa-
tion process (e.g., homogenizing big-endian and little-endian architectures).

DOTS offers two different ways for suppling code for (de-)serialization using
the DOTS Archive class:

Implicit Object-Serialization. This technique is based on defining a (de-)-
serialization operator for each argument and result class. Consider the example
given in Fig. 1. The function dots_func will be forked over the network. The
main advantage of this technique lies in reusing code in nested classes which
leads to compact and clearly structured programs.

Explicit Object-Serialization. This method is based on redefining the
system’s standard methods for (de-)serialization with user supplied code. The
main reason for us to provide this option is to facilitate the integration of
legacy marshalling code written in C in DOTS. Since for new applications the
implicit serialization is the method of choice, we will not give further details
here.

2.8 Forking DOTS Threads

Forking a function over the network can be done via the DOTS library func-
tion dots_fork. This function takes three parameters: the function to be forked,
its argument object, and the thread group to which the forked thread is as-
signed. We also provide a variant of the fork function, called dots_Ifork. This
variant takes the same parameters but allows a more efficient execution of
the generated DOTS thread: the argument object will not be serialized im-
mediately. It might happen that the DOTS thread can be executed locally;
in this case no serialization and deserialization is necessary, resulting in im-
proved performance compared to the dots_fork function, which will always
serialize and deserialize its argument object. However, the argument object of
a dots_Ifork must not be changed until a corresponding dots join is called. Thus
using dots_lfork requires more care on the part of the programmer than using
dots_fork. The differences in the internal execution between these variants are
explained in more detail in Sec. 3.3.



class X {

public:
int a;
int b;

/* The operators << and >> have to be defined for X.
* The corresponding ones for the simple datatypes
* can be used within the definition.
*/

friend DOTS_Archive& operator<<(DOTS_Archive& arch, X& x)
{return arch << x.a << x.b;}

friend DOTS_Archive& operator>>(DOTS_Archive& arch, X& x)
{return arch >> x.a > x.b;}

I
class Y {
public:
int c;
X x;
/* The operators << and >> have to be defined for Y.
* Notice that now the ones defined for X can be used
* in the definition as can the corresponding ones
* for the simple datatypes.
*/
friend DOTS_Archive& operator<<(DOTS_Archive& arch, Y& y)
{return arch << y.c << y.x;}
friend DOTS_Archive& operator>>(DOTS_Archive& arch, Y& y)
{return arch >> y.c > y.x;}
I

Y* dots_func(X* arg);

Fig. 1. Implicit Object-Serialization

2.4 Joining DOTS Threads

The functional result of a DOTS thread can be obtained via a call to dots_join.
This function takes a thread group as input parameter and returns the result
of an arbitrary thread in the group that has already terminated or of the
thread that will be the first one to terminate if none has terminated so far.
Moreover, a status flag indicating an error will also be returned. If no thread in
the group has already terminated, dots_join will block until one thread in the
group will be finished with its computations. Thus the semantics of dots_join
is the one of a join any construct.



2.5 Cancellation of DOTS Threads

With subsequent calls to dots_join the results of all forked threads in a group
can be retrieved. However, in many applications—e. g. in search problems—it
is not necessary to obtain the results of all forked threads in the group, but
one or some of the returned results are sufficient to allow the computation to
continue.

In such a case all remaining threads in a thread group, which are still queued
(cf. Section 3), can be terminated by a call to the dots_cancel function, which
takes a thread group as a parameter. Thus subsequent computations do not
have to compete for computational resources with others that are now known
to be unnecessary.

By the combination of the join any semantics of dots_join with the function-
ality of dots cancel, DOTS is a powerful tool for the distributed computation
of irregularly structured search problems.

3 Design and Implementation of DOTS

3.1 System QOverview

Fig. 2 shows the internal structure of the DOTS Commander. Its main com-
ponent is the Global Manager, which—in conjunction with the Scheduler—
conducts the execution process. The Logging Manager controls the distributed
logging system of DOTS. DOTS follows the SPMD model, which means that
all involved hosts run the same program. The task of the Session Manager is
to manage the node processes running the same program on all hosts. Fig. 3
shows the components of a node process. Together with the Global Manager
the Local Manager controls the execution of DOTS threads. The Logger pro-
cesses the logging messages of the node process. All the described functional
components of the DOTS Commander and of the node processes execute in
parallel.

3.2 General Life Cycle of DOTS Threads

We first look at the general life cycle of a DOTS thread, beginning with its
creation by dots_fork and finishing up by delivering its result through dots_join.
Fig. 4 shows the example of three hosts, one running the DOTS Commander
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Fig. 4. Life Cycle of a DOTS Thread

and two running a node process. The execution process consists of the following
five steps (cf. Fig. 4):

Step 1: The process begins with a call to dots_fork in the user program (1a).
The argument object is serialized, and the corresponding DOTS_Archive
object is stored for later use (1b). In order to register the new DOTS thread
in the system, a message containing a thread information object is sent to
the Global Manager (1c). In DOTS, thread information objects are used
to store data associated with the execution of DOTS threads, like a thread
ID or the ID of the node process chosen to execute the thread. Thread
information objects are passed from one execution stage to the next and
are updated during a step when necessary. When all described actions are
completed, dots_fork returns to the user program.

Step 2: The Global Manager extracts the thread information object from
the message and passes it to the Scheduler. The task of the Scheduler is to



determine a node process for the execution of the DOTS thread according
to its scheduling strategy. The default scheduling strategy is to assign a
DOTS thread to the node which currently executes the smallest number
of DOTS threads. In order to prevent the hosts from being overloaded, for
each host the maximal number of DOTS threads to be executed at a time
can be individually determined by the user. The best bounds depend on the
application as well as on the number of available CPUs and speeds of the
CPUs. The scheduling strategy can easily be changed by the programmer
by subclassing the scheduler interface class. If a node process is determined,
its ID is stored in the thread information object, which is sent back to the
caller process (2a). If no node process is currently available (because all hosts
execute the maximal number of threads) the thread information object is
queued (2b). In this case the execution process of the DOTS thread will be
continued when a node process completes the execution of another DOTS
thread (see Step 4).

Step 3: The Local Manager of the caller process sends a message containing
the thread information object and the archive with the serialized argument
object to the executor node process.

Step 4: The Local Manager of the executor process produces a copy of the
argument object from the archive contained in the message (4a). The thread
function is now executed with the argument object in a new system thread
(4b). If the execution has completed, the result object is serialized (4c) and
sent in a message to the caller process (4d). The Global Manager is now
informed by a message that a new DOTS thread can be executed on this
host (4e).

Step 5: After receiving the message from the executor process, the Local
Manager of the caller process extracts the DOTS_Archive from the message
and produces a copy of the result object (5a). Now the result is ready to be
obtained via dots_join. If a call to dots_join has already occurred, the caller
is now unblocked.

3.3 Optimizations of the Ezxecution Process

In two special cases the described execution process is changed in order to
minimize the communication overhead of DOTS threads. The optimizations
presented below will have their maximal effect if a DOTS thread is created with
dots_Ifork. In this case the serialization of the argument object is deferred to
Step 3 in the normal execution process and thus can be completely eliminated
in the situations described below.



3.3.1 Local execution

This optimization takes effect when the Scheduler determines that the caller
process is to be identical with the executor process. In this case Steps 3 to
5 are combined into one single step, which is entirely executed in the caller
process. Almost all of the communication overhead can be avoided, leading to
an efficient local execution of the DOTS thread fork.

3.3.2 FEzxecution as a virtual thread

When a call of dots_join appears and the affected DOTS thread is still waiting
in the queue of the Scheduler for its execution, the DOTS thread is removed
from the queue and executed as a local procedure call. Instead of blocking
and waiting for the remote execution of the DOTS thread, the caller thread of
dots_join is continuing its execution with a function call for the function with
the argument object (Cf. Fig. 5). In [19] this has been called the virtual threads
concept. The effect is the same as that of a real thread fork, but the efficiency
is much higher in case of a loaded system. Thus the potentially unbounded
logical concurrency of an application is dynamically reduced to the bounded
amount of real parallelism the hardware can provide.

Caller
Process

Fig. 5. Execution as Local Procedure Call

Using dots_fork instead of dots_Ifork requires in both cases that the serialized
argument object must first be retrieved from the stored archive. For this reason
dots_Ifork should be used when ever possible. However, the use of dots_fork has
the advantage that the argument object is frozen at the time of the fork.

3.4 Implementation of DOTS

The implementation of DOTS is based on the Adaptive Communication En-
vironment (ACE) toolkit [28]. ACE is a system-independent, object-oriented
platform for developing communication software. There are implementations
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of ACE for all major UNIX systems (e.g. Solaris 2.x, AIX, SGI IRIX), for
Windows NT (Win32) and for MVS OpenEdition. Fig. 6 shows the overall
structure of DOTS and those parts of ACE which were used for its implemen-
tation.

Using ACE as the implementation foundation for DOTS provides the following
advantages:

e The platform independence of ACE makes DOTS available on a wide range
of operating systems and hardware platforms. Currently we are using im-
plementations of DOTS on Solaris 2.x, IRIX 6.x and on Windows NT. It is
to be expected that DOTS can be easily ported to all other platforms that
are supported by ACE.

o ACE’s class encapsulation of the C based APIs of the different operating
systems substantially improves the type-safety of the implementation. This
can prevent the occurrence of run time errors and therefore improves the
correctness and software quality.

e Performance measurements presented in [29] show that the additional ab-
straction layers of ACE do not cause any significant performance loss com-
pared with using operating system calls directly.

4 Applications and Performance Measurements

This sections presents distributed applications designed using DOTS as the
underlying parallelization platform. We concentrate on the description of a
distributed implementation of an integer factorization application employing
the elliptic curves method. Additionally, results of an application in the do-
main of computer graphics and results of a system performance comparison
are given. A survey of DTS applications is presented in Section 5.
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4.1  Factorization with Elliptic Curves

The problem of the factorization of a positive integer N into its prime divisors
has important applications in coding theory and particularly in cryptography.
Therefore a lot of algorithms approaching this problem have been developed,
many of them during the last twenty years.

The Elliptic Curve Method. H. W. Lenstra’s Elliptic Curve Method
(ECM) [20], one of these algorithms, advances on the idea of the p— 1-method
[24,7], but it replaces the residues mod N by points on elliptic curves modN.
The points on an elliptic curve with coordinates over a field of characteristic
p & {2,3} form an Abelian group. However, the group law can also be applied
to the points on a curve modN except for the case that an inverse involved
in the computation doesn’t exist. But if x + NZ € Z/NZ has no inverse, then
ged(xz, N) # 1.

So, if N is not prime and one adds arbitrary points on a curve mod/N, then
there is a chance that the group law, i. e. the computation of the inverse, fails
and one has found an integer k such that ged(k, N) # 1. By the number
of additions of points (on several curves) one is willing to perform, one can
control the probability that the algorithm finds a nontrivial divisor of N.

LiDIA. The computational algebra library LiDIA [21] contains a sequential
implementation of the ECM that uses the suggestions in [24]. This algorithm
performs the group law on a number of elliptic curves, and the calculation on
different curves are completely independent. Apart from the very first curves,
the time needed for the computations on a single curve ranges from several
seconds to a few minutes. So if one assigns to each curve its own thread, the
granularity is too fine for the threads to be distributed by a simple e-mail
method, but still coarse enough to hide network communication overhead.

Furthermore, each thread performs the same algorithm on its set of initial
values; thus the ECM fits the SPMD paradigm.

Unfortunately, there is no way of making LiDIA multi-thread safe without
major modifications in the library’s source code. Therefore the distributed
version of the ECM had to be re-implemented, but the code follows LiDIA
closely.

The Implementation. Since there were already positive experiences with
the GNU MP library [15] in multi-threaded programs—one only has to apply
a minor patch—the new implementation relies on this library for the involved
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arithmetic. The element methods of the residue classes essentially expand to
calls of the GMP functions.

The algorithm requires a table of primes that, for performance reasons, can’t
be copied each time a thread is forked. Thus every process has exactly one
copy of the prime table that is generated during the initialization procedure.
Since all threads are permitted read-only access to this static table this will
cause no synchronization problems.

Finally a MT-safe random number generator had to be provided which was
accomplished by a class that encapsulates the seed value and calls the MT-safe
function nrand48 of the standard C library.

After providing these MT-safe classes, it was straight forward to reproduce
LiDIAs implementation of the ECM. First a sequential version (“decs”) was
created that does not link DOTS. This version was used as a reference when
we measured the speedup of the distributed version (“decp”).

The implementation proceeds as follows: After the elimination of small prime
factors by trial division, a queue of jobgroups is generated, where each group
represents a number of curves which are used to look for factors consisting of
up to 1 +log,, v/N but not more than 34 decimals. Notice that not only the
jobgroups are getting larger, but that also the effort per curve increases within
the jobgroups. The curves are processed in a function dec_calc. Any divisors
thus found will be added to the result vector.

Starting with decs the parallelization with DOTS was straightforward. Argu-
ments and return values of dec_calc were encapsulated, respectively, and the
call of dec_calc was moved to a wrapper function dec_thread. This function
takes a pointer to an instance of the argument class and returns the address
of an instance of the return value class. Thus dec_thread meets the signature
that DOTS requires for functions to be registered as distributed functions.
Furthermore, the (de-)serialize operators for both of those classes had to be
provided. But that only meant to apply the respective operators to the in-
stance elements. Those are already defined in DOTS for the elementary types,
and it was implemented for the Integer class by a string representation, which
can be easily serialized in turn with the tools provided by DOTS.

In decp the calculations on each curve are done in a separate thread: For all
curves in the queue’s first two jobgroups a call of dec_thread is forked, where
dots_Ifork was chosen for performance reasons. The order in which the results
are returned does not really matter, so that by dots_join the return value of any
curve out of the first group is checked as soon as it is available. If no nontrivial
factor was found, no action is taken. Otherwise all previously forked threads
are cancelled, N is reduced and all unjoined threads are re-forked. If all curves
of a jobgroup have been processed and there is another jobgroup in the queue,

12



calls of dec_thread are forked again for all curves in the next group.

Performance Measurements. For the measurements of the speedup, a
pool of four Sun UltraSPARC 1 machines (143 MHz, 32 MByte RAM) was
used, which were connected by a 10 MBit Ethernet. On each machine we
ran one process that was allowed to contain up to two DOTS-threads. The
sequential version decs was also executed on one of those machines. In order to
estimate the overhead that is introduced by DOTS itself we also measured the
runtime allowing the DOTS-commander to start only one process consisting
of one thread.

In each run, the programs were used to factorize

N = 75632729957404777706513257257027317
= 789814893838727" * 95760070552491115171",

i. e. the prime factors of NV have 15 and 20 decimals, respectively. The resulting
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Fig. 7. The measured runtimes

125 runs of decp on 4 CPUs, 50 on 1 CPU and 75 runs of decs have been
measured.

runtimes are given in figure 7, drawn over the number of curves that were
joined before a factor of N was found, if any.

One sees that initially the communication overhead outweighs the fourfold
computing power. But as soon as a call of dec calc takes several seconds,
the overhead does not dominate any longer and one gets realizable speedups.
Indeed, in the case that 72 curves were joined, the average speedup was 3.82
if one used decp on four machines. This corresponds to an efficiency of 95.5%.
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As a consequence of the measurements, it seems already attractive to dis-
tribute applications over several machines if they consist of independent cal-
culations that take only some seconds. E. g. decs calculated on the average 4.4
seconds per curve if it processed 50 curves, but decp already came up to an
efficiency of more than 75%.

4.2 Volume Rendering on a PC Network

While requiring enormous computational power, the fast rendering of 3D vol-
umetric data becomes more and more crucial for many applications in the
field of medical science and in other scientific domains. As is described in full
detail in [23], DOTS was successfully used to considerably speed up a volume
rendering application on inexpensive and widely used Windows N'T PCs. The
pool consisted of up to five Intel PentiumPro and up to four Intel Pentium IT
PCs running at 200 Mhz and at 300 MHz, respectively. The PCs were con-
nected via a 10 Mbps Ethernet network. The process of casting 2562 rays into
a 1283 data set with oversampling in ray direction could be accelerated almost
linearly by the number of involved hosts. Detailed performance results are
given in [23].

4.8  Comparing the Performance of DOTS on Solaris 2.x and Windows NT

For a performance comparison between DOTS running on Solaris and DOTS
running on Windows NT we used a program for the distributed computation
of the Mandelbrot set. The selected complex area is divided into a number
of horizontal stripes, and each stripe is treated by a separate DOTS thread.
Since this simple application does not depend on particular properties of one
of the two different operating systems, we were able to use exactly the same
source code for both platforms, making the comparison more accurate. In
spite of the simplicity of the Mandelbrot application, we were able to simulate
essential properties of more sophisticated distributed applications by varying
the following largely independent program parameters:

e The computation time (the granularity) of a DOTS thread depends on the
maximal number of allowed iterations per point.

e The amount of network traffic per DOTS thread (the network weight) can
be varied by choosing different sizes of the area to be calculated.

e The relative running time of the individual DOTS threads used in the com-
putation the irreqularity depends on the distribution of points of conver-
gence in the chosen area. This distribution can vary considerably leading to
non uniformly sized tasks.

14
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For all subsequently presented measurements we have formed DOTS threads
with a granularity of up to 5 seconds and a network weight of about 8 KByte on
both platforms. This setting represents a rather worst case approximation (low
granularity, high weight) of the properties to be found in typical application
domains of DOTS.

Performance Measurements under Solaris. The pool of hosts consisted
of 3 Sun UltraSPARC 1 workstations (each running at 143 MHz with 32 MByte
of main memory) and 3 four-processor Sun HyperSPARC 10 workstations
(running at 90 Mhz with 160-512 MByte main memory). All hosts were con-
nected by a 10 Mbps Ethernet network. One host was used to execute the
DOTS Commander, up to five other hosts were used to execute the applica-
tion program.

Performance Measurements under Windows NT. For performance
measurements under Windows NT we used a pool of 6 PCs with Intel Pen-
tium processors (150 Mhz, 64 MByte main memory) connected by a 10 Mbps
Ethernet network. One host was used to execute the DOTS Commander, up
to five other hosts were used to execute the application program.

Results. Fig. 8 and Fig. 9 show curves depicting the obtained speedups and
the corresponding efficiency values for both system platforms.

Discussion. Although substantial speedups of the computation could be
achieved with both configurations, DOTS running on a network of worksta-
tions under Solaris shows better results for speedup and efficiency compared
to the pool of Windows N'T PCs. One possible reason for this behavior might
be the comparatively heavy design of the Windows N'T system threads, which
leads to longer response times of the completely multi-threaded DOTS Local
Manager. Since Windows NT and PC Hardware nowadays is getting increasing
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attention in computer science—not only in the domain of computer graphics—
this issue will be one focus in our future research activities.

5 DTS

The Distributed Threads System DTS [2] is the ancestor of DOTS. It was
implemented on top of PVM [14] and is well suited for the parallelization
of C based applications. Parameter marshalling in DTS is achieved via user
supplied copying functions, while in DOTS object serialization is used.

In DTS, special attention was directed to transparently integrate the S-threads
system [16] for shared-memory parallel symbolic computation into a distributed
environment. DTS has been used successfully for a variety of projects whose
aim was to speed up symbolic computations in both Computer Algebra and
Computational Logic by parallelization on a network of (possibly parallel)
workstations—e. g. theorem provers [4,6], quantifier elimination packages [9],
complex root finders [27], or symbolic solvers [2,25].

5.1 Parallel Resultant Computation in PARSAC-2

Given two r-variate polynomials P,Q € Z[xy,...,x,], we are interested in
their common roots. The resultant R(P, () is a polynomial in r — 1 variables
with the property that P = P(x,) and @ = Q(z,) have a non-constant g.c.d.
(and hence common roots), if z1,...,z,_1 are such that R(xy,... ,2,_1) is
zero. Resultants have important applications in Computer Algebra, such as
performing exact arithmetic on algebraic numbers [22] or solving systems of
equations [13].

The modular method [8] is a divide-and-conquer scheme which recursively
maps the multivariate resultant computation to multiple resultant computa-
tions of homomorphic images, and, using the Chinese Remainder Algorithm,
lifts the image resultants back up to the originally desired resultant. In the
base case of univariate polynomials, the resultant may be computed using a
polynomial remainder sequence. The complexity of the algorithm is exponen-
tial in the number of variables and polynomial in the degree of P and (). This
process therefore contains a large amount of parallelism at several levels of
granularity.

The coefficient MHI scheme, here embodied in algorithm IPRES, reduces a
resultant computation of P and @ in Z[z,... ,x,] to the parallel computa-
tion of k resultants of modular polynomials in Z,,[z1,... 2], 1 < i < k,
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Case Polynomial A Polynomial B # MPres
1 IPRAN(3,64,1/2,(8,6,4)) IPRAN(3,64,1/2,(7,5,3)) 36
2 IPRAN(3,128,1/2,(5,4,3)) | IPRAN(3,128,1/2,(5,4,3)) a7
3 IPRAN(3,64,1/2,(5,4,3)) IPRAN(3,64,1/2,(5,4,3)) 24
4 || IPRAN(5,64,1/2,(3,3,2,2,1)) | IPRAN(5,64,1/2,(2,2,1,1,1)) 12
5 IPRAN(3,32,1/2,(5,4,3)) IPRAN(3,32,1/2,(5,4,3)) 13
6 IPRAN(4,64,1/2,(3,3,3,3)) | IPRAN(4,64,1/2,(2,2,2,2)) 12
7 IPRAN(3,64,1/2,(3,4,5)) IPRAN(3,64,1/2,(2,4,5)) 12
Table 1

Polynomials and number of MPRES calls of the IPRES test cases

where the p; are k distinct prime numbers of close to machine word size. The
homomorphisms involved here reduce all coefficients modulo the prime.

In the multivariate case, the variable MHI scheme, here embodied in algorithm
MPRES, reduces each resultant computation of P and Q in Z,,[z1, 2, ... , 2]
to multiple parallel recursive resultant computations of the homomorphic im-
ages of P and Q in Z,, [z, ... ,x,]. The homomorphisms involved here substi-
tute variable x; by d + 1 distinct values, where d is a bound on the degree of
the resultant. Each result is a polynomial R € Z,, [z, ... ,z,_1], and is itself
the homomorphic image of the true resultant of P and Q.

IPRES was tested with 7 cases, varying the number of variables, the degree
of the polynomials and their coefficient length. Due to that also the number
of MPRES calls changes. Table 1 shows the run-times of the test cases on a
cluster of SPARCstations ELC. Function IPRAN() generates an integral ran-
dom polynomial. The first argument determines the number of variables, the
second the coefficient length, the third the percentage of non-null coefficients,
and the last argument states the maximal degrees.
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Fig. 10. Run-times of IPRES [2]

Timings of parallel symbolic algorithms are often difficult to interpret, due
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to the complexity and irregularity of the computations. The above results
are however fairly typical. About half a dozen to a dozen machines can be
used profitably, with efficiencies above 50%, which is already a good rate for
symbolic computations. Beyond 10 machines, few results are known where
a sequentially efficient symbolic code achieves reasonable (say greater 40%)
speedup efficiency. Note that, given an exponential algorithm, it would be
easy to increase parallel grainsize and speedup efficiency by going to larger
inputs, but then sequential timings quickly become untractable. The above
tests try to show behavior around the point where parallelization is profitable
on a typical workgroup network.

Results from parallelizing MPRES are similar [2], but the MPRES calls gen-
erated by IPRES are on a lower level of granularity. Therefore it may not be
profitable to carry them over the network, if there are already enough tasks
generated by IPRES. The fork-join parallelism paradigm supported by DTS
and DOTS makes it easy to cope with this situation. An application program-
mer can convert a DOTS network fork into a thread fork on the local machine
based on static load information. DOTS itself can do a similar conversion dy-
namically at run-time, using load information and the virtual threads concept.
Any network thread still queued when it is joined will be converted by DOTS
into a call to the corresponding function.

5.2 Parallel Term-Rewriting in PaReDuX

The integration of parallel computation systems based on the S-threads system
into a distributed environment can be particularly well seen on the example of
the Distributed PaReDuX system [4]. This system implements an equational
theorem prover, based on an unfailing completion procedure, on a network of
multiprocessor SPARC-stations.

The functions, which are distributed over the network via DTS, are imple-
mented in the PaReDuX system. PaReDuX [5,3] is a multi-threaded parallel
equational theorem prover based on the S-threads package. It provides sev-
eral so called strateqy compliant completion algorithms. These work on each
multi-processor node. Via DTS the distributed system combines a top-level
master-slave scheme distributing search parallelism over the net with the strat-
egy compliant parallel completion scheme of PaReDuX that works on each
multi-processor node.

By this combination a coarse grained search parallelism is used via DTS
whereas small grained work parallelism is issued by PaReDuX on the multi-
processors. In the case of unfailing completion a nice summation of the speed-
ups of these two forms of parallelism could be obtained by the Distributed
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Distributed PaReDuX

Distributed and Parallel (Unfailing) Completion Distributed Algorithms
PaReDuX PaReDuX
Term Term
Rewriting Rewriting
(parallel TC, (parallel TC, .
parallel AC, parallel AC, Parallel Algorithms
parallel UC, parallel UC,
) )
ReDuX ReDuX
(TC, AC,IC, UC, ... (TC, AC,IC, UC, ...

I

‘ List and Symbol Processing ‘

‘ ‘ S-threads API

S-threads DTS S-threads System

POSIX Threads PVM POSIX Threads
SM&[J WJrksta%on SNJP WJrksta

‘ ‘ Network

on Hardware

Fig. 11. The Distributed PaReDuX system [6].

PaReDuX system, cf. [6]. The architecture of the Distributed PaReDuX sys-
tem is sketched in Fig. 11.

6 Related Work

6.1 Nexus

Nexus [10,11] provides an integration of multi-threading and communication
by separating the specification of the communication’s destination and the
specification of the thread of control that should respond to that communi-
cation. Dynamically created global pointers are used to represent communi-
cation endpoints. Remote service requests are used for data transfer and to
asynchronously issue a remote execution of specified handler functions. Thus
in Nexus threads are created as a result of communication.

In contrast to DOTS, Nexus provides no explicit join construct to retrieve
return values from a remote thread. Nexus is primarily designed as foundation
for high level communication libraries and as target for parallel programming
language compilers, whereas DOTS is intended to be used directly by the
application programmer.
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6.2 Cilk-NOW

Cilk is a parallel multi-threaded extension of the C language. Cilk-NOW [1]
provides a runtime-system for a functional subset of Cilk that enables the user
to run Cilk programs on networks of UNIX workstations.

Cilk-NOW supports multi-threading in a continuation passing style, whereas
DOTS uses the fork/join paradigm for coding distributed multi-threaded pro-
grams. Cilk-NOW implements a work-steeling scheduling technique. In DOTS
the Global Manager can be configured with application dependent schedulers
by subclassing the system’s scheduler interface.

6.3 Millipede

Millipede [12] is a system that also focuses on providing a parallelization
environment on widely available hardware platforms. The essential goal of
Millipede is to provide a distributed shared memory (DSM) environment for
parallel programming on a cluster of Windows N'T workstations.

7 Future Work

One of our future goals is to support a wider range of platforms. We are
planning to provide a version of DOTS for the IBM S/390 Parallel Sysplex
system [26], a clustered multiprocessor architecture. DOTS will then be avail-
able on a wide range of system platforms including low cost Windows NT PC
networks and high end mainframe clusters, providing one single, easy-to-use
programming paradigm for all architectures.

An other area of future research will be the parallelization of other parts of
the LiDIA library. One focus will be the quadratic sieve method for integer
factorization. The thread group feature of DOTS can be used to integrate both
the elliptic curves and the quadratic sieve method into one single distributed
factorization application.
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