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Abstract. The cloud evolved into an attractive execution environment
for parallel applications from the High Performance Computing (HPC)
domain. Existing research recognized that parallel applications require
architectural refactoring to benefit from cloud-specific properties (most
importantly elasticity). However, architectural refactoring comes with
many challenges and cannot be applied to all applications due to funda-
mental performance issues. Thus, during the last years, different cloud
migration strategies have been considered for different classes of parallel
applications. In this paper, we provide a survey on HPC cloud migra-
tion research. We investigate on the approaches applied and the parallel
applications considered. Based on our findings, we identify and describe
three cloud migration strategies.

Keywords: Cloud Computing - High Performance Computing - Parallel
Application - Cloud Migration - Cloud-aware Refactoring -

1 Introduction

Traditionally, many parallel applications have been designed and developed for
HPC clusters. However, more recently, the cloud evolved into an attractive ex-
ecution environment for HPC workloads [26, 38]. Former research on this topic
mainly investigates how to make cloud environments HPC-aware [25]. In par-
ticular, resource pooling and virtualization leading to heterogeneous processing
speeds as well as low network throughput and high network latency have been
addressed [8, 41]. During the last years great progress has been made with respect
to HPC-aware cloud environments. As of today, many cloud providers, including
Amazon Web Services (AWS)! and Microsoft Azure?, offer cloud environments
optimized for HPC workloads [44, 1].

On the other hand, there is a growing interest to make parallel applica-
tions cloud-aware [12,13,34,30]. However, this requires architectural refactor-
ing, which comes with many challenges and cannot be applied to all applications
due to performance issues [19, 5]. As a result, different cloud migration strategies
have been applied to different parallel applications.

! https://aws.amazon.com.
2 https:/ /azure.microsoft.com.
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As more and more research considers the migration of parallel applications to
the cloud, we argue that a survey on HPC cloud migration research is required to
understand current research issues. In this paper, we investigate on HPC cloud
migration and describe three cloud migration strategies identified in existing
research. The remainder of this paper is structured as follows. In Section 2,
we describe two different types of cloud environments that can be employed to
operate parallel applications. In Section 3, we present the research method and
search strategy underlying our survey. Based on existing research, we describe
the HPC cloud migration strategies identified in Section 4. Moreover, we discuss
the key findings of our survey. In Section 5, we conclude our work and describe
future research opportunities.

2 Cloud Environments for HPC

Two different types of cloud environments can be employed to operate paral-
lel applications: Standard and HPC-aware cloud environments. Standard cloud
environments often suffer from CPU time sharing leading to heterogeneous pro-
cessing speeds as well as low network throughput and high network latency,
which are well-known effects of resource pooling and virtualization [8,41]. On
the other hand, HPC-aware cloud environments limit these negative side-effects
by means of the following concepts:

— CPU affinity: HPC-aware cloud environments ensure CPU affinity both at
the application and at the hypervisor level. As a result, vCPUs are mapped
to physical CPU cores leading to improved cache locality and higher cache
hit rates [13]. This concept is also referred to as CPU pinning.

— HPC-aware virtual machine (VM) placement policies: Standard cloud sched-
ulers do not ensure co-location of VMs. Existing work has shown that HPC-
aware VM placement effectively resolves this issue and leads to significant
performance gains [14].

— Guaranteed network performance: HPC-aware cloud environments are based
on novel concepts such as single root input/output virtualization (SR-IOV)
to ensure guaranteed network bandwidth and latency with constant quality
of service while supporting resource pooling and network virtualization [25].

— Disabled VM migration: Typically, VM migration is disabled to avoid envi-
ronmental overhead.

— Disabled memory overcommitment: Memory overcommitment leads to pre-
emption and paging and is typically disabled [7].

— Lightweight virtualization: Container-based virtualization (OS-level virtual-
ization) ensures lower overheads compared to hypervisor-based virtualization
[43].

3 Research Method and Search Strategy

Our survey is based on a literature review to identify existing research on HPC
cloud migration. We followed the steps of a literature review process described
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in [3]. For the search process, we employed the ACM Digital Library®, IEEE
Xplore*, and Google Scholar®. The following search query was used for the
search: ("cloud” OR 7Zelastic” OR “elasticity”) AND ("migrat*” OR “trans-
form” OR ”convert” OR ’refactor*” OR "adapt®*” OR ”"modification”) AND
("hpe” OR “parallel application”).

We selected relevant articles based on a manual selection process: Only peer-
reviewed articles (published in English) have been included. Moreover, only arti-
cles that discuss in detail how to migrate parallel applications to the cloud were
selected. Additional literature has been identified (1) by reviewing the references
of selected articles and (2) by analyzing the citations of these articles [40].

4 Cloud Migration Strategies for HPC

In this section, we review existing work on HPC cloud migration. This section
is structured according to the three cloud migration strategies that we have
identified: (1) Copy & Paste, (2) Cloud-aware Refactoring, and (3) Cloud-aware
Refactoring & Flasticity Control. Table 1 summarizes our classification of ex-
isting work. For each cloud migration strategy, we describe the key findings in
detail.

4.1 Copy & Paste

This migration strategy proposes the migration of existing parallel applications
without modifications. Both standard and HPC-aware cloud environments have
been evaluated by following this migration strategy. For instance, the authors of
[6] evaluate an existing application based on the Message Passing Interface (MPI)
[10] deployed to a standard cloud environment. Moreover, serial versions of the
NAS Parallel Benchmarks (NPB) [2] have been employed to assess the compu-
tational performance of different instance types. The results obtained show that
the lower performance measured is mainly related to the high network latencies
and low network bandwidths in standard cloud environments. The authors of
[33] also evaluate existing MPI-based applications from the NPB in standard
cloud environments. On the other hand, the authors of [23] investigate MPI-
based applications in HPC-aware cloud environments and measure low variance
in network bandwidth. Moreover, the raw computation performance has been
shown to be comparable to HPC clusters, even if virtualization overhead exists.
The authors of [42] consider HPC-aware cloud environments more cost-effective
compared to traditional HPC clusters if a cluster does not achieve high uti-
lization. The authors of [12] evaluate different parallel applications based on
MPI and CHARM-++ deployed to both standard and HPC-aware cloud envi-
ronments. Whereas specifically tightly-coupled applications suffer from the low
network bandwidth and high network latency in standard cloud environments,

3 https://dl.acm.org.
4 https://ieeexplore.ieee.org.
% https:/ /scholar.google.com.
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Table 1. This table shows our classification of existing work on HPC cloud migration.

Selected Cloud Elasticity Cloud Migration
Article Environment Control Strategy
Evangelinos et al. [6] Standard None Copy & Paste
Roloff et al. [33] Standard None Copy & Paste
Marathe et al. [23] HPC-aware None Copy & Paste
Zhai et al. [42] HPC-aware None Copy & Paste
Standard /
Gupta et al. [12] HP Coaware None Copy & Paste
Rajan et al. [28] HPC-aware None Copy & Paste
Gupta et al. [15] Standard None Cloud-aware Refactoring
Rajan et al. [30] Standard None Cloud-aware Refactoring
Vu et al. [39] Standard None Cloud-aware Refactoring
Kehrer et al. [20] Standard None Cloud-aware Refactoring
. . Cloud-aware Refactoring
Da Rosa Righi et al. [34]  Standard Reactive & Blasticity Control
L . Cloud-aware Refactoring
Da Rosa Righi et al. [35]  Standard Reactive & Elasticity Control
. . Cloud-aware Refactoring
Rodrigues et al. [32] Standard Hybrid & Elasticity Control
A . Cloud-aware Refactoring
Da Rosa Righi et al. [36]  Standard Hybrid & Elasticity Control
. Cloud-aware Refactoring
Raveendran et al. [31] Standard Reactive & Blasticity Control
. . Cloud-aware Refactoring
Rajan et al. [28] Standard Reactive & Blasticity Control
Haussmann et al. [16] Standard Reactive Cloud-aware Refactoring

& Elasticity Control
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HPC-aware cloud offerings have been shown to effectively overcome these issues.
Thus, tightly-coupled applications benefit from on-demand access to compute
resources and the freedom to select the number of processing units. Having the
freedom to select the number of processing units per application run is new to
HPC users as traditionally the number of processing units is limited by resource
quotas or one tries to optimize the number of processing units to get a job
scheduled faster (e.g., in HPC clusters with job schedulers).

Whereas most approaches require the manual selection of the number of
processing units, recent work also shows how to automatically select the number
of processing units in an HPC-aware cloud environment when the computational
steps and communication patterns of the application can be captured in form of
an application model. Based on the application model, one is able to calculate how
the number of processing units effects execution time, speedup, efficiency, and
monetary costs thus allowing versatile optimizations per application run. The
authors of [28] specifically address applications based on the split-map-merge
paradigm and consider the cost-time product as objective function to statically
select the optimal number of processing units per application run. Therefore, the
automated selection process considers (1) information on the input problem, (2)
an application model built for split-map-merge applications, (3) a user-defined
objective function (in this case the cost-time product as a function of the number
of processing units), and (4) information on the execution environment (e.g.,
processing speed, network bandwidth) obtained by measuring sample workloads.

By following this approach, parallel applications benefit from on-demand
access to compute resources and pay-per-use, which enables fine-grained cost
control per application run. Because the number of processing units does not
have to be adapted at runtime, an existing parallel application can be deployed
to an HPC-aware cloud environment without modifications.

SPMD-based parallel application

7 7 7 7 Computation

“ - |:| Communication

7 7 7 0

{ Iteration

Z % % Z — Point-to-point

<> Broadcast

Py P, P Py

Fig. 1. Many parallel applications are developed based on the Single Program Multiple
Data (SPMD) application model and rely on synchronous communication in globally
defined communication phases.
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Findings: In general, many existing parallel applications are implemented
based on the Single Program Multiple Data (SPMD) application model [22, 24,
25] (especially supported by MPI) and rely on frequent synchronous communi-
cation. A prototypical SPMD-based MPI application is given in Fig. 1. In each
iteration, every MPI process executes local computations. Thereafter, a pair of
MPI processes exchanges application-specific data via point to point commu-
nication. After all process pairs finished their data transfers, updates required
globally are sent to other processes by means of an MPI broadcast primitive
(cf. Fig. 1). For tightly-coupled SPMD-based parallel applications, HPC-aware
cloud offerings provide an execution environment that can be used analogously
to an HPC cluster but allows individual configuration of compute resources (by
means of virtualization techniques). In existing work, elasticity is not employed
and thus the number of processing units has to be statically selected. However,
by following the Copy € Paste migration strategy, parallel applications benefit
from an on-demand provisioned execution environment that can be payed on a
per-use basis and individual configuration of compute resources.

4.2 Cloud-aware Refactoring

This cloud migration strategy proposes architectural refactoring to make existing
parallel applications cloud-aware [27,19]. We discuss several examples for cloud-
aware refactoring in the following.

The authors of [15] introduce a dynamic load balancing mechanism to address
the challenges of tightly-coupled iterative MPI-based applications in standard
cloud environments caused by virtualization and resource pooling. Therefore,
a dynamic load balancer continuously monitors the load of each vCPU and
reacts to a measured imbalance by adapting the task distribution to virtual
machines. Task overdecomposition is used to enable dynamic load balancing,
which effectively reduces idle time.

The authors of [30] employ the Work Queue framework [4] to develop par-
allel applications for standard cloud environments. The Work Queue framework
is designed for scientific ensemble applications and provides a master/worker ar-
chitecture with an elastic pool of workers. The application employed in the pre-
sented case study is designed for replica exchange molecular dynamics (REMD)
and can be considered as iterative-parallel. Similar applications are discussed by
the authors in [29].

The authors of [39] employ standard cloud environments to operate irregu-
lar task-parallel applications and present a work stealing algorithm that selects
victims (other processing units) based on the measured network link latency.
Processing units with a lower latency are preferred for stealing operations. The
presented algorithm is self-adaptive and has been shown to outperform other
load balancing mechanisms that do not consider network link latency.

The authors of [20] specifically address applications with dynamic task paral-
lelism and discuss how these applications can benefit from elastic scaling. They
argue that, in cloud environments, parallel applications have to dynamically
adapt the degree of logical parallelism based on a dynamically changing physical
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parallelism, given by the number of processing units (e.g., number of vCPUs,
VMs). Based on their findings, the authors describe the design and implementa-
tion of a cloud-aware runtime system for elastic task-parallel processing in the
cloud. The presented runtime system transparently controls the parallelism of an
application to ensure elastic scaling. Therefore, developers mark parallelism in
the program and the runtime system automatically adapts the logical parallelism
by generating tasks whenever required. The runtime system exploits available
processing units with maximum efficiency by mapping the logical parallelism
(tasks) to the physical parallelism (processing units). An application based on
this cloud-aware runtime system is elastically scalable because newly provisioned
processing units (VMs) automatically receive tasks by means of load balancing
and a task migration mechanism releases processing units that have been se-
lected for decommissioning. To decouple task generation and task processing,
the runtime system is based on the distributed task pool execution model and
solves parallel coordination problems based on Apache ZooKeeperS. The authors
state that the runtime system is not limited to any specific cloud management
approach or tooling: Cloud management may comprise any kind of external de-
cision making logic that finally adapts the number of processing units (i.e., the
physical parallelism).

Findings: Cloud-aware refactoring has been specifically employed in the con-
text of standard cloud environments. Typically, heterogeneous processing speeds
and varying network latencies negatively effect parallel applications that em-
ploy synchronous communication and / or barrier synchronization. Cloud-aware
refactoring can be employed to make these applications less affected by the char-
acteristics of standard cloud environments. By following this migration strategy,
one is able to exploit (low cost) standard cloud resources while still maximiz-
ing parallel performance. However, it has also been recognized that such an
approach cannot be applied to all applications. Specifically, in the context of
parallel applications with frequent communication and synchronization, archi-
tectural refactoring leads to fundamental performance issues and thus cannot be
applied.

4.3 Cloud-aware Refactoring & Elasticity Control

This cloud migration strategy proposes the use of elasticity to process HPC work-
loads in the cloud. Therefore, architectural refactoring of parallel applications is
fundamentally required to deal with a varying number of processing units. In the
following, we discuss several examples for this migration strategy and describe
the elasticity control mechanisms considered.
The authors of [34] describe a reactive elasticity control mechanism for iterative-

parallel applications. The presented concept called AutoElastic supports the au-
tomated transformation (source-to-source translation) of existing MPMD7-based

6 https://zookeeper.apache.org.
" Multiple Program Multiple Data.
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MPI-2 applications with a master/worker architecture into elastic parallel ap-
plications. MPI-2 features dynamic process management and thus supports a
varying number of MPI processes [11]. The presented concepts are evaluated
by using a numerical integration application which simulates different dynamic
workload patterns (e.g., ascending, descending, and wave workload). Similar con-
cepts are discussed in [35].

The authors of [32] present a hybrid elasticity controller based on a tech-
nique called live thresholding, which has also been used in [36]. Live threshold-
ing dynamically adapts the thresholds of a reactive elasticity controller, which
is implemented as a closed feedback-loop architecture. Workload patterns are
detected by comparing the last two average load values calculated based on
monitored time series data and simple exponential smoothing. Similar concepts
are discussed in [36]. Both approaches address iterative-parallel applications.

The authors of [31] propose a concept to transform MPI-based iterative-
parallel applications into elastic applications. They describe how to adapt ex-
isting MPI-based applications to deal with a dynamically changing number of
processing units. The presented approach basically terminates a running appli-
cation and restarts the application with a different number of processing units.
Termination can only be applied at certain points in the program, e.g., at the
end of an iteration. The described elasticity controller is designed to optimize
the desired execution time, which is estimated based on the number of iterations
and the average iteration time. The underlying assumption is that the amount
of work per iteration is constant. Scaling decisions are made by comparing the
measured average iteration time with the required iteration time to complete
within the user-defined execution time: If the average iteration time is below the
required iteration time, processing units are added. Otherwise, processing units
are removed.

The authors of [28] (we already discussed this work in Section 4.1) also de-
scribe a second approach to use their application model: Whenever the charac-
teristics of the cloud environment (e.g., processing speed, network bandwidth)
are expected to change at runtime, an elasticity controller monitors the envi-
ronment and continuously evaluates the objective function based on monitoring
data. When the optimal (with respect to the user-defined objective function)
number of processing units changes, the elasticity controller dynamically adapts
the resource configuration. A cloud-aware application architecture is required to
support such adaptations at runtime.

The authors of [16] discuss elasticity-related opportunities and challenges for
irregular task-parallel applications. Their computation and communication pat-
terns are input-dependent, unstructured, and evolving during the computation
and thus their runtime and scaling behavior cannot be determined upfront [9, 37].
As a result, the total number of essential basic computational steps per time unit
is unknown a priori and cannot be predicted. These applications comprise an un-
predictable workload pattern. The authors discuss the two conflicting objectives
of fast processing and low monetary costs finally leading to a multi-objective
optimization problem and Pareto optimal solutions, which prevents automated
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decision making with respect to the number of processing units. To deal with
this problem, the authors employ the concept of opportunity costs to convert the
underlying objective functions into a single aggregated objective function, thus
allowing cost-based selection of the number of processing units. Because one can-
not reason about the effects on execution time, speedup, efficiency, and monetary
costs in absolute terms, the authors present a reactive elasticity controller for
heuristic cost optimization: The cost function is approximated based on metrics
monitored at runtime. Therefore, the elasticity controller continuously monitors
the application and evaluates the defined objective function (minimize the mon-
etary costs based on the presented cost model). The authors empirically evaluate
their elasticity controller by comparing the results of their heuristic cost opti-
mization approach with the minimum monetary costs (which can be obtained
by measuring the scalability of the application with exemplary input problems).

Findings: This migration strategy proposes the use of elasticity to deal with
dynamic and unpredictable workload patterns and / or environmental changes
in standard cloud environments. Either proactive, reactive, or hybrid elasticity
control mechanisms can be employed (depending on the characteristics of the ap-
plication). Additionally, a cloud-aware application architecture is fundamentally
required to ensure that a parallel application dynamically adapts to a changing
number of processing units (selected by an elasticity controller). By following
this migration strategy, parallel applications benefit from elasticity in form of
more efficiently employed compute resources.

4.4 Summary and Discussion

Specifically for the Copy & Paste migration strategy, the ongoing evolution of
HPC-aware cloud environments provides attractive benefits when compared to
traditional HPC cluster environments. Existing work following this migration
strategy does not make use of elasticity. Because mainly tightly-coupled data-
parallel applications have been considered, this can be explained by considerable
repartitioning efforts (when processing units are added or removed). With the
technology available today, it is not possible for tightly-coupled SPMD-based
applications to make use of elasticity to optimize costs and efficiency by adding
or removing processing units during the computation due to the high overheads
that would result from repartitioning.

The Cloud-aware Refactoring migration strategy proposes architectural refac-
toring of existing parallel applications. Architectural refactoring, in general and
specifically in the context of parallel applications, is a comparatively new con-
cept. The authors of [45] applied architectural refactoring to develop cloud-native
applications. In [19], we present an approach to assess the cloud readiness of par-
allel applications that can be used to gain insights into the architectural changes
required. In this context, we also recognized that many parallel applications
provide several degrees of freedom with respect to their architecture.

Finally, we identified a third migration strategy: Cloud-aware Refactoring €
Elasticity Control. Existing work following this migration strategy focuses on
the benefits that can be obtained by means of elasticity. Specifically, in [28] and
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[16], monetary costs and time are explicitly considered. The different approaches
described basically result from the different characteristics of the applications
addressed: Whereas the scaling behavior of applications based on the split-map-
merge paradigm can be predicted based on an application model [28], the scaling
behavior of irregular task-parallel applications is unknown upfront and unpre-
dictable by nature, which requires reactive elasticity control [16]. On the other
hand, both approaches convert the underlying multi-objective optimization prob-
lem into a single-objective optimization problem to enable automated decision
making with respect to the optimal number of processing units. The authors of
[28] use the cost-time product to create a single-objective optimization problem.
The authors of [16] employ the concept of opportunity costs, which can be used
to express time in terms of costs, thus enabling a purely cost-driven optimization.

5 Conclusion

With the aim of providing contributions to practitioners and researchers alike,
we present a classification of HPC cloud migration research and describe the
key findings. Most importantly, we recognized that elasticity, which is often
considered to be the fundamental property of cloud environments, can only be
beneficially employed under certain circumstances. More research is required
to understand elasticity-related opportunities and challenges in the context of
HPC. Whereas HPC users traditionally had no visibility of the monetary costs
of compute resources in cluster environments, the pay-per-use property requires
users to consider costs in cloud environments. Related work shows how to exploit
on-demand compute resources and elasticity to control the monetary costs of
parallel computations in the cloud. These approaches dynamically adapt the
number of processing units under consideration of scare resources such as time
and money. However, as of today, a clear and generally applicable understanding
of elasticity in the context of HPC does not exist.

Our long-term goal is to understand how to design, develop, and manage
cloud-aware parallel applications, i.e., applications that leverage cloud-specific
properties such as on-demand access to compute resources, pay-per-use, and
elasticity. Therefore, we follow a multi-faceted approach by investigating design-
level, programming-level, and system-level aspects [19, 20] as well as delivery and
deployment automation [18,17, 21].

Acknowledgements. This research was partially funded by the Ministry of
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