
  
   Parallel and Distributed Computing Group Department of Computer Science Reutlingen University    Container-Based Module Isolation  for Cloud Services  Stefan Kehrer, Florian Riebandt, Wolfgang Blochinger Reutlingen University {stefan.kehrer, wolfgang.blochinger}@reutlingen-university.de     @INPROCEEDINGS{KEHRER2019_SOSE, author={Stefan Kehrer and Florian Riebandt and Wolfgang Blochinger}, title={Container-Based Module Isolation for Cloud Services}, booktitle={2019 IEEE International Conference on Service-Oriented System Engineering (SOSE)}, year={2019}, pages={177-186}, doi={10.1109/SOSE.2019.00032}, ISSN={2642-6587}, }      Original Publication Reference: https://ieeexplore.ieee.org/document/8705914  © 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

https://ieeexplore.ieee.org/document/8705914


Container-based Module Isolation for Cloud

Services

Stefan Kehrer, Florian Riebandt, Wolfgang Blochinger

Parallel and Distributed Computing Group, Reutlingen University, Germany

firstname.lastname@reutlingen-university.de

Abstract—Due to frequently changing requirements, the in-
ternal structure of cloud services is highly dynamic. To en-
sure flexibility, adaptability, and maintainability for dynamically
evolving services, modular software development has become the
dominating paradigm. By following this approach, services can be
rapidly constructed by composing existing, newly developed and
publicly available third-party modules. However, newly added
modules might be unstable, resource-intensive, or untrustworthy.
Thus, satisfying non-functional requirements such as reliability,
efficiency, and security while ensuring rapid release cycles is
a challenging task. In this paper, we discuss how to tackle
these issues by employing container virtualization to isolate
modules from each other according to a specification of isolation
constraints. We satisfy non-functional requirements for cloud
services by automatically transforming the modules comprised
into a container-based system. To deal with the increased over-
head that is caused by isolating modules from each other, we
calculate the minimum set of containers required to satisfy the
isolation constraints specified. Moreover, we present and report
on a prototypical transformation pipeline that automatically
transforms cloud services developed based on the Java Platform
Module System into container-based systems.

Index Terms—continuous delivery, DevOps, non-functional
requirements, container virtualization, deployment automation

I. INTRODUCTION

DevOps [1] and continuous delivery [2] have been intro-

duced to bridge the gap between development and operations.

Automated delivery pipelines support frequent releases of

new software versions. Technically, container virtualization

provides a solid foundation to operate cloud services based

on state-of-the-art container runtime environments [3]–[7].

By following this approach, each service can be delivered,

deployed, and managed independently in line with the mi-

croservices architectural style [6], [8]. At the same time,

many other benefits result from the isolated context established

by container virtualization, such as improved security, fault

containment, and fine-granular resource control.

With respect to the internal structure of dynamically evolv-

ing cloud services, modular software development has become

the dominating paradigm to ensure flexibility, adaptability, and

maintainability for each individual service [8]. By means of

modern development frameworks (e.g., OSGi1, JPMS2), cloud

services can be designed and developed as a set of small

and loosely coupled modules, which can be replaced fast,

1https://www.osgi.org.
2http://openjdk.java.net/projects/jigsaw/spec.

shared, and reused in another context. Thus, modular software

development enables the rapid construction of cloud services

by composing existing, newly developed and / or publicly

available modules. Combining the microservices architectural

style for the external architecture and modular software de-

velopment for the internal architecture of cloud services is a

powerful means to tackle both the increasing complexity of

software-based systems and the need for rapid adaptation due

to frequently changing requirements.

However, whereas composing newly developed and publicly

available modules enables rapid software development, satisfy-

ing non-functional requirements such as reliability, efficiency,

and security in this context is a hard task. Newly added mod-

ules might be unstable, resource-intensive, or untrustworthy. In

fact, we would like to establish an isolated context for these

modules to benefit from improved security, fault containment,

and fine-granular resource control, but without the need to

create, deploy, and manage a separate service. Building and

maintaining too many (too fine-grained) services has been

identified as one of the major issues of the microservices

architectural style and leads to performance issues [9], [10].

In this paper, we discuss how to employ container virtu-

alization to isolate modules of a single cloud service from

each other according to a specification of isolation constraints.

Our approach satisfies several non-functional requirements

by automatically transforming a cloud service comprised of

modules into a container-based system. To deal with the

increased overhead that results from isolating modules by

means of containers, we calculate the minimum set of con-

tainers required to satisfy the isolation constraints specified.

In particular, our contributions are the following:

• We introduce the concept of container-based module

isolation for evolving cloud services, which complements

the operational principles of existing container runtime

environments (and corresponding cloud offerings).

• We present the architecture of a transformation pipeline

for transforming a cloud service comprised of modules

into a container-based system with respect to the isolation

constraints specified.

• We discuss and report on a prototypical implementation

of the transformation pipeline that automatically trans-

forms cloud services developed with the Java Platform

Module System (JPMS) into container-based systems.

• We discuss the applicability of container-based module

isolation in the context of continuous delivery.



The remainder of this paper is structured as follows. In Sec-

tion II, we motivate our work by describing several scenarios

where container-based module isolation can be beneficially

employed. Section III introduces the concept of container-

based module isolation for cloud services. In Section IV,

we present the architecture of a transformation pipeline that

automatically transforms a cloud service into a container-based

system with respect to the isolation constraints specified. Our

prototypical implementation is discussed in Section V and

evaluated in Section VI. Moreover, we show that our con-

cepts are well-suited to enhance existing continuous delivery

pipelines in Section VII. Section VIII reviews related work.

In Section IX, we conclude our work.

II. PROBLEM STATEMENT AND MOTIVATION

Both modules and (micro)services are well-known compo-

nents in the tradition of Component-based Software Develop-

ment [11] from which more complex systems can be built.

Whereas (micro)services have been proven to benefit from

independent deployment and management as well as inter-

operability [10], modules are well-suited to establish code-

level structure and enable code reuse and sharing [12]. Today,

modern frameworks support modular software development

(e.g., OSGi, JPMS), which introduced novel features such as

service abstraction3. This enables loosely coupled modules

and thus fosters flexibility, adaptability, and maintainability

[12]. Modules can easily be added, replaced, refactored, or

removed depending on the current context and application-

specific requirements. Moreover, modules can be shared across

teams and with the public by employing private / public

code repositories. By following this approach, developers

typically enhance their services with existing modules rather

than developing required functionality from scratch. Making

use of public code repositories and open source software

(OSS) dramatically increases the speed of development and

has become a major competitive advantage in recent years.

Besides, continuous delivery provides a foundation for

shortening software release cycles. Continuous delivery

pipelines have been introduced that automate the delivery of

new software releases [13]–[15]. Moreover, container runtime

environments are employed to operate and manage cloud

services [4], [10]. These environments make use of container

virtualization to ease the transition from development to

production and substantially reduce the risk of faults due

to environmental changes. To make use of these benefits,

developers are required to provide their service in form of

one or more containers [16].

As modules can be shared and reused in another context,

they might be unstable, resource-intensive, or untrustworthy.

Thus, operating all modules in a single container might impair

non-functional requirements such as reliability, efficiency, and

security. To deal with this problem, we argue that container

virtualization can be employed to isolate selected modules

3Note that service abstraction in the context of modules is a programming-
level concept not to be confused with web services.

from one or more other modules. Containers create an isolated

context with benefits such as improved security, fault contain-

ment, and fine-granular resource control based on established

Linux kernel features (such as namespaces and control groups)

[5], [17]. Fig. 1 summarizes the benefits of modules and

services as well as the benefits gained from container-based

isolation of modules.

In the following, we discuss several scenarios, in which

isolating modules, i.e., limiting their interference, by means

of container virtualization and thus deploying a cloud service

as a set of containers can be beneficially employed.

Security: Modules imported from third parties contain

potentially untrustworthy or malicious code. Whereas known

vulnerabilities can be detected by vulnerability scanners in an

automated manner, some (yet unknown) vulnerabilities cannot

be detected by such scanners. Finding these vulnerabilities

is a manual and time-consuming task resulting in delayed

software releases. Moreover, developers might want to use

third-party modules even if they are untrustworthy, because

there is no alternative available. Implementing the provided

functionality from scratch is often no option, e.g., in the

context of rapid prototyping. Well-known examples of security

threats are memory safety issues including buffer overflow

attacks and dangling pointer bugs as well as file system

manipulations. Whenever timely releases are an important

requirement, operating third-party modules in isolation from

security-sensitive modules avoids these threats.

Fault containment: Newly developed, prototypical, and

potentially unstable software deteriorates the reliability of a

service. Isolating potentially unstable modules by means of

container virtualization enables fault containment [18] and

thus successfully avoids consequential errors that affect the

core functionality of a service [19].

Resource allocation and control: Isolating a module allows

the fine-grained specification of resource requirements for the

corresponding container [10]. Thus, modules can be restricted

with respect to their CPU cycles or memory requirements

ContainersSecurityFault ContainmentResource Allocation, Monitoring, and Control 
ModulesEncapsulationCode Reuse & Sharing
ServicesIndependent Delivery, Deployment, and ManagementInteroperabilityAPI

Module Container Service
Fig. 1. The benefits of modules, isolating modules by means of container
virtualization, and services can be easily combined.



by simply leveraging resource management features of the

underlying operating system.

Testing and monitoring: Testing and monitoring multiple

modules operated in a single container requires instrumenta-

tion at the programming level. Isolating a module in a con-

tainer, however, eases monitoring. By following this approach,

modules can be monitored by logging the resource consump-

tion and runtime behavior of the corresponding container.

Newly added modules can be isolated this way, monitored

easily, and might become part of the core functionality over

time, e.g., when they have been implemented more efficiently

with respect to their resource consumption.

Whereas existing container runtime environments facili-

tate the deployment and operation of multi-container cloud

services [16], we identified a lack of concepts and tools

that allow developers to employ container virtualization to

isolate modules from each other. On the other hand, manually

constructing a set of containers is a frustrating and error-prone

task, subject to frequent changes as a service evolves, and thus

impedes rapid release cycles.

III. METHODS AND CONCEPTS OF CONTAINER-BASED

MODULE ISOLATION

In this section, we introduce the concept of container-based

module isolation for dynamically evolving cloud services.

First, we describe the requirements identified and discuss how

our approach satisfies these requirements. Then, we show that

our concepts can be mapped to the operational principles of

existing container runtime environments.

A. Requirements

We identified the following requirements with respect to

container-based module isolation for evolving cloud services:

R1 Software developers require a simple means to specify

isolation constraints, which ensure that a module runs in

isolation from one or more other modules.

R2 Shortening software release cycles is a fundamental

requirement. Hence, an automated transformation of a

modular cloud service to a container-based system has to

be ensured. Similarly, automated deployment must be fa-

cilitated by generating the deployment artifacts required.

R3 Isolating modules by means of containers leads to various

sources of overhead, which should be minimized. Thus, it

is essential to find the minimum set of containers required

for deployment purposes while satisfying all isolation

constraints specified.

R4 To access isolated modules, inter-container communica-

tion is required. Access and location transparency have

to be achieved to avoid code changes (by developers).

B. Container-based Module Isolation

The core idea of our approach is that isolating modules by

means of container virtualization can be beneficially employed

for a variety of use cases (cf. Section II). Therefore, we have

to provide simple yet expressive constructs to specify isolation

constraints among one or more modules (R1).

In this context, a modular cloud service is represented by

a set of modules M = {m1, ...,mn}. We define a set of

isolation constraints as a binary relation ⊥ ⊆M×M, where

an isolation constraint (mk,ml) ∈ ⊥ states that the modules

mk and ml have to be operated in different containers. This

simple formalization also allows the construction of higher-

level isolation constraints, which can be automatically trans-

formed to a binary relation. We discuss several examples in

Section III-C.

The generation of a container-based system based on the

isolation constraints specified has to be automated (R2). There-

fore, we propose an automated transformation pipeline that

transforms a given cloud service and a set of isolation con-

straints to a container-based system (cf. Fig. 2). Technically,

the transformation pipeline generates deployment artifacts

that can be used for automated deployment. Details of the

transformation pipeline are described in Section IV. In the

following, we describe the core concepts of the transformation

by means of a formal specification. We define the Container-

based Module Isolation Problem (CMIP) and the Minimum

Container-based Module Isolation Problem (Minimum-CMIP)

based on [20].

Let C = {c1, ..., cm} be a set of containers in each of which

one or more modules can be operated.

Definition 1. Container-based Module Isolation Problem (k-

CMIP) Given a cloud service with a set of modulesM and a

set of isolation constraints ⊥ overM, k-CMIP is the decision

problem whether there is a set C of containers with |C| ≤ k
and a mapping f :M→ C such that all isolation constraints

in ⊥ are satisfied.

k-CMIP is equivalent to the graph (vertex) coloring problem

[21] and thus NP-complete. This can be shown by mapping

the modules of a cloud service to the vertices of a graph and

the isolation constraints specified to the graph’s edges. In this

context, a valid coloring of the graph represents a mapping

of modules to containers. Note that a graph only has a valid

coloring if the edge relation is irreflexive. Analogously, an

Cloud Service Transformation PipelineModules Container-basedSystem
Minimum-CMIP Solver

M 1M 1m1 Isolation Constraints+
Software Developers

!=
Fig. 2. Our approach for container-based module isolation considers isolation
constraints specified by software developers and automatically transforms a
given modular cloud service into a container-based system by solving the
underlying optimization problem.



Container 1
Container 1 Container 2 Container 3m0 m2

m3
(Proxy)

m1 m2
(Proxy)

Server
m3

Server
Fig. 3. Exemplary container-based system that satisfies a set of isolation
constraints specified.

isolation constraint (mk,mk) ∈ ⊥ cannot be satisfied because

a module cannot be isolated from itself. Therefore, we assume∄(mi,mi) ∈ ⊥.

To minimize the overhead resulting from container-based

module isolation, we have to find the minimum set of con-

tainers required to satisfy the isolation constraints specified

(R3). This can be accomplished by solving the corresponding

optimization problem.

Definition 2. Minimum Container-based Module Isolation

Problem (Minimum-CMIP) Given a cloud service with a

set of modules M and a set of isolation constraints ⊥ over

M, Minimum-CMIP is the optimization problem of finding a

minimum set of containers C, i.e., finding a minimum k, such

that a solution to k-CMIP exists for M and ⊥.

A Minimum-CMIP solver thus computes a valid and op-

timized container assignment for the modules of a given

cloud service. Based on the calculated container assignment,

the proposed transformation pipeline builds a container-based

system (cf. Fig. 2). However, isolating modules by means

of containers leads to inter-container communication. To en-

sure access and location transparency (R4), additional proxy

mechanisms are required that serve local method / function

calls by routing them to isolated modules. Fig. 3 shows an

exemplary container-based system with four modules. As we

can easily see, m2 and m3 have been isolated from module

m0 and each other. Nevertheless, m0 accesses the isolated

modules m2 and m3 in the same manner as the local module

m1. The required proxy mechanisms have to be generated

automatically. This is accomplished by the transformation

pipeline, which is described in detail in Section IV.

C. Specification of Isolation Constraints

In the following, we show that the formalization of isolation

constraints as defined above provides a powerful means to

specify higher-level isolation constraints, which can be au-

tomatically transformed to a binary relation. Therefore, we

discuss several examples based on the application scenarios

described in Section II.

A simple higher-level isolation constraint can be textually

described as isolate module mk from all other modules in

M, e.g., for monitoring purposes. This isolation constraint

can be transformed by adding isolation constraints (mk,m)

to ⊥ for all m ∈ M \ {mk}. Modules might also be

organized according to security levels from which isolation

constraints can be deduced. For instance, to ensure that all

modules with security level x cannot be operated together

with modules of a lower security level: For all mk ∈M with

secLevel(mk) = x, add isolation constraints (mk,m) to ⊥ for

all m ∈ M \ {mk}, where secLevel(m) < secLevel(mk).
Here, a hierarchy of security levels is only an exemplary use

case for any other form of higher-level isolation constraints

that can be deduced from module meta data.

To improve fault tolerance, one might isolate at least two

modules that implement the same interface. In this case,

there is a higher probability that we can access the provided

functionality even if one module is currently not available.

For creating the corresponding isolation constraints, the source

code of the cloud service has to be scanned.

On the other hand, existing isolation constraints can also be

removed. For instance, when a module has been proven to be

stable in production or after its source code has been checked

comprehensively and security issues have been eliminated.

Technically, isolation constraints can be specified in a

simple text file (for an example see Section V).

D. Deployment to Container Runtime Environments

Existing container runtime environments support the de-

ployment and management of multi-container services [16].

In Kubernetes4 for example, a so-called pod5 is defined as a

group of one or more containers with shared resources such as

storage and network. The containers of a pod are guaranteed

to be co-located and are given a shared context. In particular,

containers of a pod share an IP address and port space, which

eases the generation of proxy mechanisms for inter-container

communication. The pod concept has been adopted by other

container runtime environments. For example, Marathon, a

container orchestrator for Apache Mesos, supports pods with

the version 1.46. Nomad supports so-called groups7 with

similar semantics. Our prototypical implementation (cf. Sec-

tion V) generates deployment artifacts for Kubernetes and thus

facilitates the automated deployment of a given cloud service.

These container runtime environments can be hosted in a

public or private cloud setting. Furthermore, they are also

offered as a service by cloud providers. For instance, Amazon

Web Services (AWS) offers Kubernetes as a service with

Amazon EKS8. By following this approach, customers benefit

from an automated setup with multiple availability zones and

cluster auto-scaling.

IV. TRANSFORMATION PIPELINE

In this section, we describe the architecture of a transfor-

mation pipeline for transforming a given cloud service repre-

sented by a set of modules and a set of isolation constraints

4https://kubernetes.io.
5https://kubernetes.io/docs/concepts/workloads/pods.
6https://mesosphere.github.io/marathon/docs/pods.html.
7https://www.nomadproject.io/docs/job-specification/group.html.
8https://aws.amazon.com/de/eks.



PrepareTransformationCloud Service
Modules DeploymentTemplate

Minimum-CMIP Solver
M 1M 1m1 Isolation Constraints+ != Create Container Assignment Isolate Modules Create Container Images Create DeploymentTemplate

ContainerCode
Filesystem ContainerRegistry

Code!=

Container Assignmentm1:c1,m2:c1,m3:c2Stored in Relates to
Fig. 4. The transformation pipeline is comprised of five steps and finally produces a container-based system according to the isolation constraints specified.

into a container-based system. Different technologies can be

used to implement this transformation pipeline (for an example

see Section V). The transformation pipeline is essentially

comprised of five steps, which are depicted in Fig. 4 and

explained in the following.

Prepare transformation: The transformation pipeline per-

forms code-level transformations to isolate modules of the

cloud service based on the isolation constraints specified.

Typically, the source code of the corresponding cloud ser-

vice is required. Source code files have to be provided by

developers and are retrieved from a filesystem or a code

repository (version control system) such as Subversion9, Git10,

or Mercurial11. Additional validity checks can be applied to

ensure that the source code provided and the specification of

isolation constraints can be processed by the transformation

pipeline.

Create container assignment: To create a valid container

assignment, i.e., an assignment of modules to containers, the

underlying Minimum-CMIP has to be solved. Based on the

given cloud service, a corresponding Minimum-CMIP instance

is derived. Therefore, the provided source code files have to be

scanned to identify modules. As a result, an undirected graph

with the modules as vertices and the isolation constraints as

edges is generated (cf. Section III). Consequently, algorithms

that are able to solve the graph coloring problem can be

applied to solve the constructed Minimum-CMIP. However,

note that solving such an NP-optimization problem requires

an approximation algorithm because large problems cannot be

solved exactly (with acceptable runtimes). In Section V, we

describe a prototypical implementation of the Minimum-CMIP

solver. The solution of this optimization problem provides

the number of containers required as well as the assignment

of modules to containers. The container assignment is the

9https://subversion.apache.org.
10https://git-scm.com.
11https://www.mercurial-scm.org.

construction plan according to which the following steps build

a container-based system.

Isolate modules: In this step, several code-level trans-

formations are applied to isolate modules according to the

container assignment provided. To isolate modules by means

of containers, inter-container communication is required. Inter-

container dependencies are resolved (1) by generating proxy

modules, each of which replaces an original module with a

proxy and serves local calls by routing them to the isolated

module and (2) by generating a corresponding server per

container that dispatches inter-container calls to the modules

hosted by the container (cf. Fig. 3). Inter-container calls can be

implemented based on any remote procedure call (RPC) tech-

nology. However, special emphasis has to be put on ensuring

access and location transparency (related to requirement R4).

Create container images: Container images are the artifacts

from which containers can be instantiated. To specify the

construction of a container image, a build specification (e.g.,

a Dockerfile) is employed. In this step, a build specification is

generated per container listed by the container assignment. A

build specification contains the modules assigned to the con-

tainer, the generated proxy mechanisms, as well as dependen-

cies required for execution (e.g., interpreter, runtime system).

In this context, it might be required to compile developer-

supplied and generated modules. The build specifications are

employed to build container images. Finally, these container

images are pushed to a container registry from which they can

be retrieved during deployment (cf. Fig. 4).

Create deployment template: For deployment purposes, a

deployment template is required that specifies the container

images related to the service. A deployment template can be

processed by a container runtime environment in an automated

manner. The syntax of the deployment template depends on

the target runtime environment. For example, our prototype

described in Section V creates a deployment template for

Kubernetes.



V. PROTOTYPICAL IMPLEMENTATION

To validate the concept of container-based module isolation,

we implemented a prototype of the proposed transformation

pipeline in Java. We chose the Java Platform Module System

as modular development framework, Docker12 to build con-

tainers, and Kubernetes as target runtime environment.

A. Java Platform Module System (JPMS)

The novel JPMS, introduced with Java 9, provides the

basic constructs for modular software development of Java-

based applications and thus aims at solving several well-

known dependency management problems [22]. Therefore, it

proposes modules for encapsulating code, which explicitly

declare their dependencies to other modules, exported pack-

ages, and provided services (implemented interfaces) in the

module descriptor file (module-info.java). By design,

dependencies are static and thus can be verified at compile

time. Modules can be distributed in form of modular JAR

(Java Archive) files.

The JPMS does not only enable application-level modular-

ity, but has been used to modularize the Java Development

Kit (JDK) itself. This has a major advantage over former

monolithic Java Runtime Environments (JRE): By resolving

explicit dependencies, only required platform modules are

packaged into a so-called modular runtime image [23]. A

novel JDK-tool called jlink13 can be used to create these

runtime images. This is particularly beneficial in the context of

container virtualization because the size of container images

is significantly reduced.

B. Implementation

In the following, we describe how we implemented each

step of the transformation pipeline depicted in Fig. 4. The

expected input is a Java-based cloud service developed with

the JPMS. Each module of the service contains a JSON file

that specifies its isolation constraints.

Prepare transformation: We retrieve the source code files

provided by developers from the local filesystem. Each module

contains a simple text file describing a list of modules from

which it should be isolated. We check that the specification of

isolation constraints complies with our JSON format.

Create container assignment: We identify modules by

means of the Java Module API and parse the corresponding

JSON files to identify isolation constraints. Based on this

information, a Minimum-CMIP is constructed. We generate

an undirected graph with the identified modules as vertices

and the identified isolation constraints as edges and check if∄(mi,mi) ∈ ⊥ holds (cf. Section III). To solve the Minimum-

CMIP, we rely on the Welsh-Powell algorithm [24], which

is a heuristic (greedy) algorithm for graph coloring. Our

Minimum-CMIP solver produces a valid container assignment

according to which we isolate modules in the following.

12https://www.docker.com.
13https://openjdk.java.net/jeps/282.

Isolate modules: To isolate modules according to the

container assignment, we apply several code-level transforma-

tions. First, we replace modules that are required locally but

hosted in another container with generated proxy modules.

Such dependencies can be derived from the module descrip-

tor file (cf. Section V-A). Proxy modules provide the same

interface as the replaced module (via the module descriptor)

and internally perform a remote procedure call to the original

module (via localhost). Next, we create a server module per

container that dispatches inter-container calls to the modules

hosted by the container. Technically, remote procedure calls

are implemented based on the Java bindings14 of ZeroMQ15,

a high-performance messaging library. Access and location

transparency is thus ensured by encapsulating the inter-

container communication required inside local proxy modules.

Proxy and server modules are generated with JavaPoet16,

a source code generation library. Note that we assume all

containers to be co-located by means of the pod concept (cf.

Section III-D). Thus, discovery mechanisms are not required.

Create container images: We create a temporary folder

per container on the local filesystem, which contains the build

specification of and all artifacts required by the correspond-

ing container. First, we compile the developer-supplied and

generated modules resulting in a bunch of JAR files. Then, a

Dockerfile per container has to be created. The generation of

Dockerfiles is implemented based on Apache FreeMarker17,

which is an open-source template engine. The Dockerfiles

generated are based on the Alpine Linux base image18. To

build container images, we assume a Docker Engine running

on the host. We connect to the Docker Engine by using

Docker-Client19. Docker-Client connects to the Docker Engine

via the default UNIX domain socket provided to control

Docker-specific functionality. We build the container images

described by the generated Dockerfiles and push them to a

private Docker Registry20 from which they can be retrieved

for deployment (cf. Fig. 4).

Create deployment template: In Kubernetes, deployment

templates are specified in YAML. As mentioned in Sec-

tion III-D, we create a pod per cloud service. Thus, the

generated YAML file defines a single pod and lists all the

container images related to this pod that have been built before.

The generation of deployment templates is also implemented

based on Apache FreeMarker.

VI. EVALUATION

In the following, we evaluate our prototypical implemen-

tation and discuss several sources of overhead resulting from

container-based module isolation. We also show that our trans-

formation pipeline is well-suited in the context of continuous

14https://github.com/zeromq/jeromq.
15http://zeromq.org.
16https://github.com/square/javapoet.
17http://freemarker.org.
18https://hub.docker.com/ /alpine.
19https://github.com/spotify/docker-client.
20https://docs.docker.com/registry.



delivery, i.e., that it does not introduce limitations on fast and

frequent releases.

Testbed. Our testbed consists of a Kubernetes cluster hosted

in our OpenStack21-based cloud environment. The Kubernetes

master is operated on a CentOS 7 virtual machine (VM) with

2 vCPUs clocked at 2.6 GHz, 4 GB RAM, and 40 GB disk.

Kubernetes nodes are operated on a CentOS 7 VM with 8

vCPUs clocked at 2.6 GHz, 8 GB RAM, and 40 GB disk.

Communication Overhead. As our implementation trans-

forms method calls to isolated modules into inter-container

calls (crossing container boundaries), communication latency

is expected to be higher compared to intra-container calls.

For evaluation purposes, we measured the latency of an intra-

container and an inter-container method call. The method

employed for our measurements requires a String object

as argument and simply returns this String object. The

serialized size of this object is only 8 bytes. It thus establishes

a baseline for more complex, arbitrarily implemented methods.

We executed 150 measurements for both the intra- and the

inter-container method call. All measurements were performed

in our Kubernetes testbed described above. Based on our

measurement, we calculated an average intra-container latency

Tintra of 60.21 ± 20.4 microseconds and an average inter-

container latency Tinter of 8405.15 ± 4977.5 microseconds.

Thus, the average inter-container latency Tinter is about 140

times higher. Depending on the actual execution time of the

method itself and how frequently it is called, the performance

penalty might be negligible. Note that our measurements

evaluate a worst case scenario. The execution time of methods

is usually much higher. Nonetheless, trade-offs are required

with respect to conflicting non-functional properties. Isolation

constraints provide a means to trade security for response time.

Deployment Overhead. We performed a simple experiment

to compare the deployment time of a single-container cloud

service with the deployment time of several multi-container

cloud services. We measured the deployment time Tdeploy for

a single-container service and three multi-container services

with 5, 10, and 20 containers per service. The container image

employed for the measurements is based on the Alpine Linux

3.7 base image and OpenJDK 11. It has a total image size of

253 MB. Our measurements were performed in our Kubernetes

testbed. We calculated an average deployment time Tdeploy

of 13.0 ± 0.7 s (1 container), 20.7 ± 1.1 s (5 containers),

32.0 ± 1.9 s (10 containers), and 59.0 ± 6.5 s (20 containers)

based on three deployment runs for each service. Note that

the deployment of multiple containers requires sublinear time

when compared to a single-container service. For instance, the

deployment time of a service with 20 containers only increases

by a factor of roughly 4.5.

Minimum-CMIP Solver Overhead. In the context of con-

tinuous delivery, we have to ensure that solving the Minimum-

CMIP (which is part of the presented transformation pipeline)

does not negatively affect the overall transformation time. To

evaluate the performance of the Minimum-CMIP solver, we

21https://www.openstack.org.

measured the execution time Tsolve that is required to create

a valid container assignment. In the following, we describe an

experiment that shows how our implementation performs for a

wide range of different problems with different characteristics

(such as number of modules and isolation constraints as well

as constraint densities).

We generated 1400 prototypical Minimum-CMIP instances

and measured the corresponding execution time Tsolve .

Minimum-CMIP instances were constructed for 28 different

sets of modules Mi, i ∈ {1, 2, ..., 28}, with

|Mi| =







































10 for i = 1
|Mi−1|+ 10 for 1 < i < 10

100 for i = 10
|Mi−1|+ 100 for 10 < i < 19

1000 for i = 19
|Mi−1|+ 1000 for 19 < i < 28

10000 for i = 28

(1)

Isolation constraints are generated by means of the GEN-

ERATECONSTRAINTS procedure shown in Algorithm 1. For

each module mk ∈Mi it adds a random amount of isolation

constraints to ⊥i. GENERATECONSTRAINTS can be param-

eterized by means of the weighting factor w to control the

constraint density. For each Mi, we employed 10 different

weighting factors w ∈ {0.1, 0.2, ..., 1.0} for each of which

we generated 5 random configurations of isolation constraints

leading to 28 · 10 · 5 = 1400 Minimum-CMIP instances in

total.

Fig. 5 shows the measured execution time Tsolve for all

1400 Minimum-CMIP instances generated. As we can easily

see, all container assignments have been created in less than

23 seconds, even in a scenario with 10000 modules and

more than 50 million isolation constraints. Consequently, these

Algorithm 1 Generation of Isolation Constraints

1: procedure GENERATECONSTRAINTS(Mi, w)

2: ⊥i ← {}
3: ξ ← |Mi| · w
4: for each mk ∈Mi do

5: x← a random integer in {0, ..., ξ}
6: k ← GETINDEX(mk)

7: for j = 0, j < x, j++ do

8: l← k
9: while l = k do

10: l← a random integer in {1, ..., |Mi|}
11: end while

12: ml ← GETELEMENT(Mi, l)
13: if (ml,mk) /∈ ⊥i and (mk,ml) /∈ ⊥i then

14: ⊥i ← ⊥i ∪ {(mk,ml)}
15: end if

16: end for

17: end for

18: return ⊥i

19: end procedure



10
100

1000
10000

20 200 2000 20000

# of Module
s

Execution Time Tsolve [ms]
Fig. 5. We measured the execution time Tsolve of 1400 Minimum-CMIP instances by running our Minimum-CMIP solver implemented in Java on a CentOS
7 VM with 8 vCPUs clocked at 2.6 GHz, 8 GB RAM, and 40 GB disk in our OpenStack-based cloud environment. Note that our implementation of the
Minimum-CMIP solver is a sequential one, i.e., it does not make use of parallel processing. Both axes of the plot are scaled logarithmically to base 10.

measurements show that our Minimum-CMIP solver does not

introduce major limitations on fast and frequent releases.

Limitations. Technically, because serialization is required

for inter-container communication, we can only isolate mod-

ules if serialization of input and output objects is applicable.

Security benefits of container-based module isolation as de-

scribed in Section II depend on the container virtualization

technique employed. Furthermore, resource allocation and

control as well as monitoring depend on the container runtime

environment. However, note that the Kubernetes ecosystem,

for instance, provides many tools that can be used in con-

junction with our concepts. Moreover, multi-container services

and inter-container communication also introduce additional

challenges for conventional debugging tools.

VII. APPLICABILITY AND CONTEXT

Continuous delivery is used to shorten software release

cycles [2]. To reduce manual and error-prone steps, continuous

delivery heavily relies on automation. A system that automates

the delivery process of a single independently deployable

service is called continuous delivery pipeline. A continuous

delivery pipeline streamlines the delivery process to reduce

the time from development to release and deployment in

the production environment [14]. Such a pipeline typically

includes multiple stages with unit and integration as well as

performance or user acceptance tests. Whereas most of these

tests are performed in an automated manner, also manual ones

can be included in the pipeline. One might also design a

pipeline with multiple branches to run several tests in differ-

ent test environments in parallel. Furthermore, a continuous

delivery pipeline also includes feedback cycles because the

essential idea is to get feedback (such as failed tests) as fast

as possible [2].

Fig. 6 illustrates an exemplary continuous delivery pipeline

and shows how the concept of container-based module iso-

lation can be integrated into this setting by means of the

described transformation pipeline (cf. Section IV). To benefit

from container-based module isolation, we simply have to

insert our transformation pipeline as a new stage into an ex-

isting continuous delivery pipeline. The generated deployment

template can be used to deploy the corresponding service to

the production environment. Whereas the continuous delivery

pipeline itself heavily relies on automation, the final deploy-

ment to the production environment is often designed as a

manual step. However, this manual step should be facilitated

by automated deployment scripts or templates [2]. In our case,

the generated deployment template can be used to trigger

either an automated deployment or a manual one by means

of a self-service tool. Alternatively, the deployment template

also provides a means to deploy the service to one or more

test environments to execute performance, security, or user

acceptance tests. The feedback loop enables developers to

rapidly react to failed tests, e.g., in form of code changes,

service redesign, or the specification of new isolation con-

straints. Feedback from the transformation pipeline might be

related to conflicting isolation constraints (thus describing a

Minimum-CMIP that cannot be solved) or the specification of

module names that cannot be located in the source code.

Another option to benefit from the concepts presented in this

work is the isolation of modules only for testing purposes as

described in Section II. By following this approach, developers

are able to isolate modules for monitoring purposes or running

stress tests on release candidates. Performance issues can

be identified by simply logging the resource consumption

and runtime behavior of the corresponding container, finally

resulting in a better understanding of newly developed or

added third-party modules. We deem this specifically useful

in the context of rapid prototyping.

The use of open source software and the need to change

rapidly pose hard challenges for satisfying non-functional

requirements [25]. By integrating the concepts presented in

this work into an existing continuous delivery pipeline, one

is able to benefit from both fast software releases as well as

security, fault containment, and fine-granular resource control.



UnitTest IntegrationTest …

Minimum-CMIP Solver
Transformation PipelineCloud Service

ModulesM 1M 1m1 Isolation Constraints+ != DeploymentTemplate
Software Developers Feedback

Performance Test Security Test Deployment

Fig. 6. Our transformation pipeline can be integrated into existing continuous delivery pipelines to benefit from container-based module isolation.

VIII. RELATED WORK

It has been widely recognized that continuous delivery is

required to address the need for fast and frequent software

releases [1], [2], [26]. Whereas configuration management

approaches provide a means to automate the delivery and

deployment of cloud services [8], [14], [27], more recently

containers have been used to package, deliver, and deploy

services [3], [4], [17], [19], [28].

OSGi is another well-known framework for developing

Java-based modular software. Modules are called bundles in

OSGi jargon. An additional service layer provides a publish-

find-bind model for Java interfaces, which can be dynamically

bound by means of a service registry mechanism. Whereas

both JPMS and OSGi offer code-level encapsulation, they

fail to offer isolation in terms of resource allocation and

security [29]–[31]. In [29], process-level isolation is em-

ployed to isolate modules based on the OSGi framework.

The main motivations given are improved security and sta-

bility. The authors mainly consider use cases in the field

of home automation, whereas we employ container-based

module isolation for evolving cloud services deployed to

state-of-the-art container runtime environments. The authors

of [32] describe a customized JVM that provides isolation

and resource accounting for OSGi-based applications. The

authors of [20] provide a formal definition of the so-called

Module Isolation Problem (MIP) and the corresponding Min-

imum Module Isolation Problem (Minimum-MIP). Whereas

the original concept has been described in the context of

distributed computing infrastructures, we apply the idea of

module isolation to dynamically evolving cloud services. Our

formulation of the CMIP and the Minimum-CMIP represent

adaptations of the ones presented in [20], which we tailored to

our problem setting (cf. Section II). Fundamental differences

of both approaches are that the authors of [20] do not consider

container virtualization, support hot-deployment of modules,

and employ an online algorithm for solving the underlying

optimization problem. We do not support hot-deployment of

modules, which counteracts the principles of container-based

systems. Consequently, Minimum-CMIP has to be solved only

once per software release, which is ensured by the Minimum-

CMIP solver in our transformation pipeline.

Service-level isolation is a well-known principle in the

design and development of cloud services [33]. In this work,

we show that containers can be beneficially employed not only

for service-level isolation but to isolate modules of a single

service from each other, which has been shown to be beneficial

for a variety of use cases (cf. Section II). Current container

runtime environments (cf. Section III-D) establish a shared

context for all containers of a single pod by means of the same

kernel features that are employed to isolate each container.

Thus, they support both container-based service isolation and

container-based module isolation (as proposed in this work)

out of the box.

In [16], the authors argue that containers are the funda-

mental objects from which distributed systems should be built

and discuss several design patterns for container-based sys-

tems. Specifically, the single-node, multi-container application

patterns described are relevant to our work. In this context,

three patterns namely the sidecar, ambassador, and adapter

pattern have been described. All these patterns describe a

specific composition of containers, which can be reused in

other contexts. An example for the ambassador pattern is a

container that acts as a proxy for communication from / to

a main container. This proxy container can be shared across

teams and / or with the public, thus other applications can

easily reuse the proxy mechanism provided. In contrast to this

approach, we employ containers to enforce isolation among

modules. Whereas our approach is restricted to a specific

programming language, it enables fine-grained control over

module composition and non-functional requirements while

minimizing the resulting overhead.

IX. CONCLUSION

In this work, we introduce the concept of container-based

module isolation, which enables software developers to deal

with non-functional requirements in the context of dynami-

cally evolving cloud services. We present an automated trans-

formation pipeline, which has been validated and evaluated

by means of a prototypical implementation. Moreover, we

discuss the applicability of our concepts to enhance existing

continuous delivery pipelines. As a result, we show how



to combine the benefits of modular software development,

container virtualization, and continuous delivery to deal with

several non-functional requirements in the context of dynam-

ically evolving and rapidly changing cloud services.

The concepts presented in this work pave the way for

future research on new service development and engineering

methods. We plan to consider container-based module isola-

tion in the context of cloud migration. More specifically, we

plan to apply our concepts for migrating monolithic legacy

applications to the cloud. Another idea is the automatic

deduction or recommendation of isolation constraints based

on testing results. Generally speaking, one might think of

whole test suites for testing cloud services based on OSS or

third-party components with respect to their non-functional

requirements. Going even one step further, we envision an

intelligent controller based on an automated feedback loop

that analyzes testing results, deduces the causes of faults,

specifies new isolation constraints, and executes another test

series without human intervention.

ACKNOWLEDGMENT

This research was partially funded by the Ministry of

Science of Baden-Württemberg, Germany, for the Doctoral

Program Services Computing.

REFERENCES

[1] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable
continuous delivery,” Cutter IT Journal, vol. 24, no. 8, p. 6, 2011.

[2] J. Humble and D. Farley, Continuous delivery: reliable software releases

through build, test, and deployment automation. Addison-Wesley, 2010.

[3] R. Peinl, F. Holzschuher, and F. Pfitzer, “Docker cluster management for
the cloud - survey results and own solution,” Journal of Grid Computing,
vol. 14, no. 2, pp. 265–282, 2016.

[4] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing - a systematic mapping study,” Journal

of Systems and Software, vol. 126, pp. 1–16, 2017.

[5] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: a state-of-the-art review,” IEEE Transactions on Cloud

Computing, vol. PP, no. 99, pp. 1–1, 2017.

[6] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in Proceedings of the 6th International Conference on Cloud Computing

and Services Science - Volume 1 and 2, ser. CLOSER 2016. Portugal:
SCITEPRESS - Science and Technology Publications, Lda, 2016, pp.
137–146.

[7] F. Leymann, U. Breitenbücher, S. Wagner, and J. Wettinger, Native

Cloud Applications: Why Monolithic Virtualization Is Not Their Foun-

dation. Cham: Springer International Publishing, 2017, pp. 16–40.

[8] J. Wettinger, U. Breitenbücher, and F. Leymann, “Dyn tail - dynamically
tailored deployment engines for cloud applications,” in Proceedings of

the 2015 IEEE 8th International Conference on Cloud Computing, ser.
CLOUD ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 421–428.

[9] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and Tomor-

row. Cham: Springer International Publishing, 2017, pp. 195–216.

[10] J. Soldani, D. A. Tamburri, and W.-J. V. D. Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” Journal of

Systems and Software, vol. 146, pp. 215 – 232, 2018.

[11] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota Silveira Neto,
Y. a. C. Cavalcanti, and S. R. de Lemos Meira, “Twenty-eight years
of component-based software engineering,” Journal of Systems and

Software, vol. 111, pp. 128 – 148, 2016.

[12] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[13] J. Wettinger, U. Breitenbücher, M. Falkenthal, and F. Leymann, “Collab-
orative gathering and continuous delivery of devops solutions through
repositories,” Computer Science - Research and Development, vol. 32,
no. 3, pp. 281–290, Jul 2017.

[14] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, “Streamlining
devops automation for cloud applications using tosca as standardized
metamodel,” Future Generation Computer Systems, vol. 56, no. C, pp.
317–332, 2016.

[15] S. Kehrer and W. Blochinger, “Tosca-based container orchestration on
mesos,” Computer Science - Research and Development, vol. 33, no. 3,
pp. 305–316, Aug 2018.

[16] B. Burns and D. Oppenheimer, “Design patterns for container-based
distributed systems,” in 8th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 16). Denver, CO: USENIX Association, 2016.
[17] J. Turnbull, The Docker Book: Containerization is the new virtualization.

James Turnbull, 2014.
[18] T. Saridakis, “Design patterns for fault containment,” in Proceedings

of the 8th European Conference on Pattern Languages of Programs

(EuroPLoP), 2003, pp. 493–520.
[19] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,

omega, and kubernetes,” ACM Queue, vol. 14, pp. 70–93, 2016.
[20] S. Schulz and W. Blochinger, “Adjustable module isolation for dis-

tributed computing infrastructures,” in 2011 IEEE/ACM 12th Interna-

tional Conference on Grid Computing, Sept 2011, pp. 98–105.
[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Introduction to

algorithms (3rd ed.),” 2009.
[22] A. Jecan, Java 9 Modularity Revealed: Project Jigsaw and Scalable

Java Applications. Apress, 2017.
[23] N. Black, “Nicolai parlog on java 9 modules,” IEEE Software, vol. 35,

no. 3, pp. 101–104, May 2018.
[24] D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic

number of a graph and its application to timetabling problems,” The

Computer Journal, vol. 10, no. 1, pp. 85–86, 1967.
[25] C. Esposito, A. Castiglione, and K.-K. R. Choo, “Challenges in deliv-

ering software in the cloud as microservices,” IEEE Cloud Computing,
vol. 3, no. 05, pp. 10–14, 2016.

[26] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE

Software, vol. 32, no. 2, pp. 50–54, Mar 2015.
[27] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Breiter, F. Ley-

mann, S. Moser, I. Schwertle, and T. Spatzier, “Integrating configuration
management with model-driven cloud management based on tosca,” in
Proceedings of the 3rd International Conference on Cloud Computing

and Service Science, CLOSER 2013, 8-10 May 2013, Aachen, Germany.
SciTePress, 2013, pp. 437–446.

[28] S. Kehrer and W. Blochinger, “Autogenic: Automated generation of
self-configuring microservices,” in Proceedings of the 8th International

Conference on Cloud Computing and Services Science - Volume 1:

CLOSER, INSTICC. SciTePress, 2018, pp. 35–46.
[29] T. Wegner, “A secure multi-provider osgi platform enabling process-

isolation by using distribution,” in Proceedings of the 2009 International

Conference on Security & Management, SAM 2009, July 13-16, 2009,

Las Vegas Nevada, USA, 2 Volumes, 2009, pp. 340–345.
[30] K. Gama and D. Donsez, “Towards dynamic component isolation in a

service oriented platform,” in Component-Based Software Engineering,
G. A. Lewis, I. Poernomo, and C. Hofmeister, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 104–120.

[31] N. Geoffray, G. Thomas, B. Folliot, and C. Clément, “Towards a new
isolation abstraction for osgi,” in Proceedings of the 1st Workshop on

Isolation and Integration in Embedded Systems, ser. IIES ’08. New
York, NY, USA: ACM, 2008, pp. 41–45.

[32] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frenot, and B. Folliot,
“I-jvm: a java virtual machine for component isolation in osgi,” in 2009

IEEE/IFIP International Conference on Dependable Systems Networks,
June 2009, pp. 544–553.

[33] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas,
“Service isolation vs. consolidation: Implications for iaas cloud appli-
cation deployment,” in 2013 IEEE International Conference on Cloud

Engineering (IC2E), March 2013, pp. 21–30.


