

 Parallel and Distributed Computing Group Department of Computer Science Reutlingen University AUTOGENIC: Automated Generation of Self-configuring Microservices Stefan Kehrer, Wolfgang Blochinger Reutlingen University {stefan.kehrer, wolfgang.blochinger}@reutlingen-university.de @conference{KEHRER2018_CLOSER, author={Stefan Kehrer and Wolfgang Blochinger}, title={AUTOGENIC: Automated Generation of Self-configuring Microservices}, booktitle={Proceedings of the 8th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,}, year={2018}, pages={35-46}, publisher={SciTePress}, organization={INSTICC}, doi={10.5220/0006659800350046}, isbn={978-989-758-295-0}, } The full version of this publication has been presented at CLOSER 2018. http://closer.scitevents.org/?y=2018 Original Publication Reference: http://www.scitepress.org/PublicationsDetail.aspx?ID=cvCeJMRXnsM=&t=1 © 2018 Science and Technology Publications, Lda

http://closer.scitevents.org/?y=2018
http://www.scitepress.org/PublicationsDetail.aspx?ID=cvCeJMRXnsM=&t=1

AUTOGENIC: Automated Generation of Self-configuring Microservices

Stefan Kehrer1 and Wolfgang Blochinger1

1 Department of Computer Science, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany

{stefan.kehrer, wolfgang.blochinger}@reutlingen-university.de

Keywords: Microservices, DevOps, Container Virtualization, Configuration, Service Registry, TOSCA, Docker, Consul

Abstract: The state of the art proposes the microservices architectural style to build applications. Additionally, container

virtualization and container management systems evolved into the perfect fit for developing, deploying, and

operating microservices in line with the DevOps paradigm. Container virtualization facilitates deployment

by ensuring independence from the runtime environment. However, microservices store their configuration in

the environment. Therefore, software developers have to wire their microservice implementation with tech-

nologies provided by the target runtime environment such as configuration stores and service registries. These

technological dependencies counteract the portability benefit of using container virtualization. In this paper,

we present AUTOGENIC - a model-based approach to assist software developers in building microservices

as self-configuring containers without being bound to operational technologies. We provide developers with

a simple configuration model to specify configuration operations of containers and automatically generate a

self-configuring microservice tailored for the targeted runtime environment. Our approach is supported by a

method, which describes the steps to automate the generation of self-configuring microservices. Additionally,

we present and evaluate a prototype, which leverages the emerging TOSCA standard.

1 INTRODUCTION

Today’s business environment requires fast software

release cycles. To address this issue, continuous de-

livery and DevOps aim at bridging the gap between

development and operations by employing automa-

tion and self-service tools. Microservices are an

evolving architectural style for building and releasing

software in line with the DevOps paradigm (Balalaie

et al., 2016; Pahl and Jamshidi, 2016). Microservices

are autonomous and independently deployable (New-

man, 2015).

Unfortunately, the autonomous nature of mi-

croservices challenges their development: More and

more operational aspects are transferred into the re-

sponsibility of software developers - or how Amazon

calls it: “you build it, you run it” (O’Hanlon, 2006).

This is also enabled by technological advances such

as container virtualization (Kratzke and Quint, 2017;

Pahl and Jamshidi, 2016): Microservices are com-

monly built as a set of containers, which provide a

portable means to deploy microservices on state of the

art container management systems such as Marathon1

1https://mesosphere.github.io/marathon.

on Apache Mesos2, Kubernetes3, or Docker Swarm4.

In line with this trend, software developers have to

implement their microservices including operational

behavior. Every container that is part of the microser-

vice has to be configured with specific runtime pa-

rameters as well as endpoint information to interact

with other containers. This configuration of contain-

ers might be applied during the deployment of a mi-

croservice. However, in a dynamic environment such

as the cloud, dynamic updates of runtime parameters

might be required. Furthermore, endpoint informa-

tion will likely change during runtime, e.g., if a con-

tainer has to be restarted. Thus, microservices store

their configuration in the environment5. This means

that configuration stores are used to store required

runtime parameters and service registries are used to

find other containers. Following this approach, soft-

ware developers have to wire their microservice im-

plementation with technologies provided by the run-

time environment. Besides adding more complexity,

this leads to heterogeneous implementations of con-

figuration management. Moreover, technological de-

2https://mesos.apache.org.
3https://kubernetes.io.
4https://github.com/docker/swarm.
5https://12factor.net/config.

pendencies on configuration stores and service reg-

istries provided by the runtime environment decrease

the portability benefit inherent to containers.

To address the aforementioned challenges, we

present a novel approach called AUTOmated GEN-

eration of self-configuring mICroservices (AUTO-

GENIC). Our model-based approach enables soft-

ware developers to specify the configuration opera-

tions of containers with a configuration model. Based

on this model, we transform a supplied microservice

into a self-configuring microservice by automatically

adding runtime behavior to its containers on a tech-

nical level. As a result, configuration is managed by

each container and thus accomplished in a decentral-

ized manner. This transformation is provided as a ser-

vice to developers and thus decouples environment-

specific technologies from application development.

Our approach streamlines the cooperation of develop-

ers and operations personnel by providing an abstrac-

tion layer between both groups, which basically im-

plements the separation of concerns principle in the

DevOps context. In particular, we present the follow-

ing contributions:

• We introduce the AUTOGENIC approach to assist

software developers in creating self-configuring

microservices.

• We provide the AUTOGENIC method, which de-

scribes the steps of generating self-configuring

microservices on a conceptual level.

• We present an implemented prototype, which au-

tomates the AUTOGENIC method based on the

TOSCA standard and state of the art technologies.

The paper is structured as follows. In Section 2,

we describe microservices in general and motivate

our work. Section 3 gives an overview of the gen-

eral concepts of the AUTOGENIC approach. In Sec-

tion 4, we discuss the AUTOGENIC method, which

describes the required steps to automate the genera-

tion of self-configuring microservices. Further, we

present an implemented prototype in Section 5 and

evaluate this prototype in Section 6. In Section 7, we

review related work. Finally, Section 8 concludes this

paper and describes future work.

2 STATE OF THE ART AND

MOTIVATION

In this section, we describe the state of the art and

present an exemplary microservice to motivate our

work.

2.1 Microservices

A microservice is built around a business capability

and implements the user interface, storage, and any

external collaborations required (Lewis and Fowler,

2014). Thus, each microservice is a broad-stack

implementation of software for a specific business

capability (Lewis and Fowler, 2014). Microser-

vices combine concepts from distributed systems and

service-oriented architecture leading to several ben-

efits (Newman, 2015). For instance, microservices

can be implemented with different technologies en-

abling a best-of-breed approach. Thus, new tech-

nologies can be adopted and old technologies can be

replaced much faster. Composing a system out of

many small services also provides benefits for deploy-

ment and management: It allows to deploy and scale

every microservice independently (Leymann et al.,

2017). Typically, software containers are used to

package and deploy microservice components (Pahl

et al., 2017). A topology model or template, which

describes the containers a microservice is composed

of and their relationships, enables automated deploy-

ment (Kehrer and Blochinger, 2018).

However, the benefits of microservices come with

the cost of operational complexity (Fowler, 2017).

The autonomous nature inherent to microservices re-

quires application developers to take responsibility

for operational aspects such as dynamic configuration

(Kookarinrat and Temtanapat, 2016). To this end, the

Twelve-Factor App6 principles propose to store these

information in the runtime environment. Technolo-

gies such as configuration stores and service registries

are used to store configuration values and enable dy-

namic bindings among containers. Employing tech-

nologies like Consul7, Etcd8, or Zookeeper9 is a com-

mon practice for developing microservices (Toffetti

et al., 2017). They provide a scalable medium to store

configuration information.

2.2 Motivation

In this section, we introduce a microservice, which

is used as motivating example for our work. The

topology of this microservice is composed of four

containers interacting with each other (cf. Figure 1):

The wordpress container provides an Apache HTTP

server running a WordPress installation. The mysql

container runs a MySQL database. To answer user re-

quests, the wordpress container connects to the mysql

6https://12factor.net.
7https://www.consul.io.
8https://github.com/coreos/etcd.
9https://zookeeper.apache.org.

ConfigurationStoreAPI Service RegistryAPI

ConnectsTo

wordpress mysql

memcached

backup
ConnectsTo

ConnectsTo

Figure 1: Exemplary microservice storing its configuration
in the runtime environment

container and retrieves data stored in the relational

database. Frequently requested results are cached

in the memcached container, which runs a Mem-

cached10 installation. Memcached is an in-memory

object caching system. The memcached container is

queried by the wordpress container before sending a

read request to the mysql container. Additionally, a

separate backup container periodically stores backups

of the MySQL database by connecting to the corre-

sponding container.

For configuration purposes, every container of the

formerly described microservice requires its runtime

parameters and endpoint information to interact with

other containers in the topology. To access their run-

time parameters, the containers connect to a config-

uration store provided by the runtime environment.

Similarly, every container connects to a service reg-

istry to access endpoint information of other contain-

ers (cf. Figure 1). Whenever a runtime parameter

or endpoint information changes in the environment,

a container itself is responsible for reacting to this

change. This results in software developers having

to wire their implementations with operational tech-

nologies provided by the runtime environment.

We identified several problems with this approach:

(1) APIs of the configuration store and the service

registry have to be used by software developers. Ev-

ery time the operations personnel decides to choose

another technology, software developers have to be

instructed and existing microservice implementations

have to be modified. (2) Storing endpoint information

of containers belonging to a microservice in a cen-

10https://memcached.org.

tral service registry may lead to conflicts with other

deployments and breaks the microservice paradigm,

e.g., if another service requester receives the endpoint

information of our MySQL database. This informa-

tion should be kept private and not exposed to other

microservices (O’Hanlon, 2006; Lewis and Fowler,

2014). (3) Moreover, portability is limited, i.e., mi-

croservices cannot be deployed on a runtime environ-

ment that does not provide the required technologies.

In general, software developers are confronted

with a lot of often changing technologies to enable

dynamic configuration. Technological dependencies

on specific configuration stores or service registries

counteract the portability benefit of using container

virtualization. New solutions are required, which

assist software developers in implementing dynamic

configuration for their microservices.

3 AUTOMATED GENERATION

OF SELF-CONFIGURING

MICROSERVICES

We propose AUTOmated GENeration of self-

configuring mICroservices (AUTOGENIC) to assist

software developers in building dynamically config-

uring microservices. We aim at providing a simple

means for software developers to take responsibility

for operational aspects of their microservice in line

with the “you build it, you run it” principle. We iden-

tified two fundamental design guidelines for such an

approach: (1) Software developers have to be able to

control the configuration of containers belonging to

a microservice. (2) Technological details should be

hidden from software developers to enable portability

and operational flexibility with respect to the runtime

environment and tool support.

Basically, AUTOGENIC is a model-based ap-

proach to decouple the development of microservices

from environment-specific technologies provided by

operations personnel. Software developers simply

specify configuration operations of their microservice

in a configuration model, i.e., without considering the

specific technologies present in the runtime environ-

ment. Based on this model, the required runtime

behavior can be automatically derived and mapped

to operational technologies. This enables the design

of a self-service tool for software developers to au-

tomatically transform their microservice into a self-

configuring microservice tailored for the targeted run-

time environment (cf. Figure 2).

Microservices are constructed as independently

deployable units. Thus, we assume some kind of ser-

TransformationModeling Deployment
AUTOGENIC NexusService Bundle Self-configuringService Bundle

Software Developers Operations Personnel
Runtime Environment Specification

Runtime Environment Config.StoreA PI Service RegistryA PI

Figure 2: Overview of the AUTOGENIC approach

vice bundle, which contains all the required artifacts

to deploy a microservice. An important part of the

service bundle is the topology model describing the

topology of containers and related artifacts (e.g., con-

tainer images) (Kehrer and Blochinger, 2018). The

topology model contains all information required to

automatically deploy a corresponding microservice to

a runtime environment. However, besides specifying

the containers and their relationships for deployment

purposes, developers also have to consider the dy-

namic configuration of these containers during run-

time (cf. Section 2.1).

To specify the configuration requirements, we uti-

lize the existing topology model, which is part of

every service bundle. Following a model-based ap-

proach, we enable developers to annotate each con-

tainer specified in the topology model with a config-

uration model. Figure 3 shows two containers, which

are part of a topology model, each annotated with a

configuration model. The configuration model con-

tains one or more configuration operations. These

configuration operations are defined by a name and

specify an implementation artifact as well as inputs.

The implementation artifact refers to an executable

artifact in the container (e.g., a shell script) that must

be invoked to execute the configuration operation on

a technical level. The inputs can be defined as key-

value pairs, which are passed to the implementation

artifact upon execution. In case of our exemplary mi-

croservice, a shell script for connecting to the MySQL

database might be specified as implementation ar-

tifact of the configure db operation attached to the

wordpress container (cf. Figure 3).

Additionally, we enable the use of functions to

specify input values for configuration operations.

Functions can be used to reference dynamic attribute

values of entities in the topology model, e.g., IP

addresses of modeled containers. Referring to our

exemplary microservice, the configure db operation

specifies an input named mysql ip with the function

getIPAddress() that retrieves the IP address of the

mysql container (cf. Figure 3).

A core idea of the AUTOGENIC approach is to

automatically execute configuration operations when-

ever their input values change. Since these input val-

ues are stored in the runtime environment, a corre-

sponding event-trigger has to be registered to this

change event in the environment. The callback of

this event-trigger is given by the implementation ar-

tifact specified for the corresponding configuration

operation. This enables reactive configuration and

dynamic bindings among containers. A typical ex-

ample is the configure db operation of the wordpress

container. Reconfiguration and thus execution of the

/configure.sh script is required whenever the IP ad-

dress of the mysql container changes in the environ-

ment.

The topology model enhanced with the proposed

configuration model (cf. Figure 3) is packaged into a

service bundle and then passed as input to a service

that we call AUTOGENIC Nexus (cf. Figure 2). The

ConnectsTowordpress mysql

Configuration Model

Configuration Model

configure_db:implementation: /configure.shinputs:mysql_ip: mysql.getIPAddress()
update_cache:implementation: …inputs:key: value

…
…

update_settings:implementation: …inputs:key: value
…

…

Figure 3: Containers annotated with configuration models

AUTOGENIC Nexus takes a developer-supplied ser-

vice bundle as input and generates a self-configuring

service bundle as output. The transformation applied

adds self-configuration mechanisms to each container

on a technical level based on the configuration oper-

ations specified. The AUTOGENIC Nexus is main-

tained by operations personnel and provided as a self-

service tool to software developers. It encapsulates

the specifics of the target runtime environment. This

might be the access mechanisms of the configuration

store and the service registry used in the runtime en-

vironment (e.g., APIs) as well as event-dispatching

mechanisms to trigger developer-supplied implemen-

tation artifacts. The selection of these technologies

is an operational decision and thus should be han-

dled transparently to application development. The

runtime environment specification has to be consid-

ered during the implementation of the AUTOGENIC

Nexus.

Implemented once, the AUTOGENIC Nexus pro-

vides a self-service tool for developers, which gen-

erates self-configuring service bundles targeted to a

specific runtime environment without any knowledge

on operational technologies employed. The self-

configuring service bundle contains all required in-

formation to deploy a microservice in an automated

manner (cf. Figure 2). This approach ensures the sep-

aration of concerns principle in the DevOps context

in line with our design guidelines defined above.

Following our model-based approach, service

bundles can be developed independently of the run-

time environment. This leads to several benefits com-

pared to microservice configuration on programming

level, i.e., directly implementing the API of a configu-

ration store or service registry: (1) Different technolo-

gies can be used to implement the required configura-

tion behavior depending on the target runtime envi-

ronment; (2) Developers do not have to build triggers

for configuration operations by wiring APIs. Config-

uration operations are executed automatically when-

ever their input values change; (3) Logical identifiers

of containers are only used in the model and not in

the containers themselves leading to higher reusabil-

ity. Further, these identifiers are private to the topol-

ogy model of a single microservice and thus cannot be

used by other microservices. Note that this is an im-

portant requirement, e.g., to prevent direct database

access from outside the service (O’Hanlon, 2006).

4 AUTOGENIC METHOD

The AUTOGENIC method specifies the steps to trans-

form an existing service bundle including its config-

uration models into a self-configuring service bundle.

This method describes the transformation performed

by the AUTOGENIC Nexus on a conceptual level to

guide the runtime-specific implementation by opera-

tions personnel. Accordingly, our method describes

the transformation independently of (1) the model-

ing language used for the topology and configuration

models, (2) the container format employed for virtual-

ization, (3) operational technologies in the target run-

time environment, and (4) event-dispatching mecha-

nisms used to build event-triggers. As a result, our

method supports various combinations, which can be

found in practice (cf. Section 5). Figure 4 depicts the

AUTOGENIC method. We describe its steps in the

following.

4.1 Assumptions

This method requires a service bundle that contains a

topology model enhanced with configuration models.

Moreover, build specifications for each container are

assumed to be part of the service bundle.

4.2 Step 1: Scan Topology Model &

Build Specifications

We assume that each container specified in the topol-

ogy model links its configuration model and a build

specification. Whereas the configuration model de-

scribes the desired configuration behavior, the build

specification can be used to derive the current run-

time behavior of the container. In this step, configu-

ration models and container build specifications are

scanned to derive a set of Transformation Require-

ments (TR). TRs describe the requirements that have

to be addressed during the transformation and are pro-

vided as input to the next steps. Scanning the config-

uration models leads to the following TRs:

• A StoreKeyValueRequirement describes a key-

value pair, which is used as input for a specific

configuration operation. This key-value pair has

to be stored in the runtime environment during de-

ployment (e.g., by using a configuration store).

• A KeyWatchRequirement describes the require-

ment to watch the value of a specific input key

stored in the environment. Whenever the value re-

lated to this key changes, the corresponding con-

figuration operation should be executed.

• An AttributeWatchRequirement describes the re-

quirement to watch the value of a defined attribute

such as the IP address of a specific container.

Whenever this value changes the corresponding

configuration operation should be executed.

Service Bundle Container ImageBuild SpecificationTopology Model

Scan Topology Model& Build Specifications Create BuildSpecificationsCreate Event-Triggers& Callback-Operations
Create Self-ConfiguringService BundleBuild Container ImagesAutomated Deployment

ArtifactRepository

1 2 3

45

Figure 4: Steps of the AUTOGENIC method

Additionally, the build specifications have to be

scanned. On a technical level this is performed by

simply recognizing keywords (descriptors) that are

defined by the container format employed. Scanning

the build specifications leads to the following TR:

• An EntryPointRequirement describes the entry-

point of a container. This is an executable run at

container startup (Turnbull, 2014).

TRs allow the automated construction of a new

container image (cf. Section 4.4), which fulfills

the same functional requirements as the developer-

supplied container image, but additionally contains

self-configuration mechanisms.

4.3 Step 2: Create Event-Triggers &

Callback-Operations

In this step, the TRs derived have to be addressed.

Therefore, implementation artifacts provided by de-

velopers have to be bound as callbacks to change

events in the environment. Environment-specific

event-dispatching mechanisms are employed for this

purpose. At the same time, functional aspects of a

developer-supplied container should be retained.

StoreKeyValueRequirements are addressed by an

initial setup process executed at each container’s

startup. This setup process stores the required inputs

in the environment. After the initial setup process,

each container runs the executable captured in its En-

tryPointRequirement.

KeyWatchRequirements as well as Attribute-

WatchRequirements have to be met by installing an

event-trigger for the corresponding configuration op-

eration, which executes the implementation artifact

specified whenever input values change. The im-

plementation of event-triggers depends on the tech-

nologies employed in the target runtime environment.

This includes mapping the schema of operational data

structures as well as defining access methods and pro-

tocols for the configuration store and service registry.

This step results in a set of technological arti-

facts, which ensure dynamic configuration of each

container with respect to the target runtime environ-

ment. The generated technological artifacts automat-

ically trigger the implementation artifacts supplied

by the developer every time a configuration value

changes in the environment.

4.4 Step 3: Create Build Specifications

To combine the developer-supplied container image

with the technological artifacts generated in Step 2, a

new build specification is created for each container

specified in the topology model. This build speci-

fication is built on top of the existing build specifi-

cation that defines the developer-supplied microser-

vice. It basically adds the generated technological

artifacts (cf. Section 4.3) and installs required soft-

ware packages. In this context, a build specification

template may be used, which contains the settings

derived from the runtime environment specification,

e.g., commands to install required software.

4.5 Step 4: Create Self-Configuring

Service Bundle

Since configuration operations are now managed by

the corresponding container itself, the configuration

models are not required for deployment purposes. In

this step, a new service bundle is generated, which

provides a portable means to deploy the generated

self-configuring microservice to the target runtime en-

vironment.

4.6 Step 5: Build Container Images

Finally, the container images of the newly generated

build specifications captured in the self-configuring

service bundle have to be built. Besides creating con-

tainer images, they have to be pushed to an artifact

repository, which can be accessed during deployment.

4.7 Automated Deployment

The generated service bundle provides a means to au-

tomatically deploy the generated self-configuring mi-

croservice to the target runtime environment. There-

fore, container images can be retrieved from the arti-

fact repository specified in the service bundle.

5 AUTOGENIC PROTOTYPE

In this section, we present an AUTOGENIC Nexus

prototype. The AUTOGENIC method describes how

to transform a service bundle including the configura-

tion models to low-level technical aspects of the target

runtime environment. Hence, we have to make four

decisions with respect to an implementation: First,

we have to specify the modeling language used for

topology and configuration models. Possible options

are any custom modeling language supporting our

assumptions, domain-specific languages of container

management systems such as Kubernetes, Marathon,

and Docker Swarm as well as the TOSCA standard

(OASIS, 2013). Secondly, we have to choose a

container format such as Docker, Application Con-

tainer (appc) Specification11, or the specification of

the Open Container Initiative (OCI)12. Thirdly, we

have to define the operational technologies of the

target runtime environment. Typical examples are

Consul, Etcd, ZooKeeper, SkyDNS13, Eureka14, and

Doozer15. Finally, event-dispatching mechanisms are

required. Options include specific tooling to access

operational technologies as well as ContainerPilot16.

In this section, we describe a prototype employing

the emerging TOSCA standard as modeling language,

which also contains a format for service bundles. We

rely on the TOSCA standard because it provides a lan-

guage to specify topology models of microservices in

a portable manner and concepts to specify dependen-

cies in the model. The TOSCA concept of Lifecycle

Operations already provides us with compatible mod-

eling constructs to specify configuration operations.

Further, we employ Docker17 as container virtualiza-

tion technology, Consul as configuration store and

service registry, and ContainerPilot to build event-

triggers. We describe TOSCA and a TOSCA-based

service bundle of an exemplary microservice in the

following. Moreover, we present an exemplary run-

time environment specification. On this basis, we

present the implementation of our prototype.

5.1 Topology and Orchestration

Specification for Cloud Applications

(TOSCA)

The Topology and Orchestration Specification for

Cloud Applications (TOSCA) aims at standardizing

a modeling language for portable cloud services (OA-

SIS, 2013). Therefore, cloud services are captured as

topology graphs modeled in form of a Topology Tem-

plate. The nodes in the topology are modeled as Node

Templates.

Since a Topology Template is an abstract descrip-

tion of a service topology, Deployment Artifacts such

as container images (e.g., Docker Images) are linked

to Node Templates as depicted in Figure 5. Node

Templates also define Lifecycle Operations. These

Lifecycle Operations are implemented by Implemen-

tation Artifacts such as shell scripts (cf. Figure 5).

Additionally, TOSCA provides a type system that

11https://github.com/appc/spec.
12https://www.opencontainers.org.
13https://github.com/skynetservices/skydns.
14https://github.com/Netflix/eureka.
15https://github.com/ha/doozerd.
16https://github.com/joyent/containerpilot.
17https://docker.com.

createstart
LifecycleOperations

Shell ScriptShell ScriptShell ScriptImplementation Artifacts
Deployment Artifact

implements
implements

…

Node TemplateDocker Image

Figure 5: TOSCA Artifacts and Lifecycle Operations

allows the definition of custom types such as Node

Types or Artifact types. These type definitions and

the Topology Template are captured in a so-called

Service Template. A TOSCA orchestrator processes

a Service Template to instantiate nodes. Model-

ing a TOSCA-based cloud service results in a self-

contained, portable service model called Cloud Ser-

vice ARchive (CSAR) that can be used to deploy ser-

vice instances in all TOSCA-compliant environments.

The CSAR contains the Service Template and related

Deployment Artifacts as well as Implementation Ar-

tifacts. In the Simple Profile in YAML V1.0 (OASIS,

2016), TOSCA provides modeling constructs for con-

tainers as well as TOSCA Functions. TOSCA Func-

tions allow referencing values of entities in the Topol-

ogy Template, which have to be resolved during run-

time.

5.2 TOSCA-based Service Bundle

In this section, we describe a TOSCA-based service

bundle of our exemplary microservice described in

Section 2.2. This service bundle will be used as exem-

plary input for our prototypical implementation. Due

to space limitations, we only present representative

parts of the service bundle.

We use a CSAR as service bundle, which contains

a description of the microservice topology by means

of a Topology Template. The Topology Template

specifies Node Templates for the containers, namely

wordpress, memcached, mysql, and backup. Listing 1

shows the Node Template of wordpress. It specifies

its Deployment Artifact, which is a Docker Image

(cf. Listing 1, line 6–9). This Docker Image is pro-

vided to the Create Operation to instantiate the node

(cf. Listing 1, line 12–13). To specify our config-

uration models, we append an additional Lifecycle

Interface named Configure for configuration opera-

tions (cf. Listing 1, line 14–22). This Lifecycle In-

1 wordpress:

2 ...

3 contains: [wordpress_build]

4 ...

5 artifacts:

6 wp_image:

7 file: wordpress-custom

8 type:

tosca.artifacts.Deployment.Image.Container.Docker→֒
9 repository: custom_repository

10 interfaces:

11 Standard:

12 create:

13 implementation: wp_image

14 Configure:

15 configure_db:

16 implementation: /configure.sh

17 inputs:

18 DB_HOST: { get_attribute: [mysql, ip_address] }

19 DB_USER: myuser

20 DB_PASSWORD: pw

21 DB_NAME: mydb

22 ...

Listing 1: wordpress Node Template in YAML

1 wordpress_build:

2 ...

3 artifacts:

4 build_spec:

5 file: artifacts/wordpress/Dockerfile

6 type: cst.artifacts.Deployment.BuildSpec.Docker

7 properties:

8 image_name: wordpress-custom

9 repository: custom_repository

10 interfaces:

11 Standard:

12 create:

13 implementation: build_spec

Listing 2: wordpress build Node Template in YAML

terface provides the information required by the AU-

TOGENIC Nexus.

The configure db Operation specifies an Imple-

mentation Artifact /configure.sh, which requires four

input values. The host of the database is specified

with a TOSCA Function (cf. Listing 1, line 18). A

TOSCA Function specifies an input value that de-

pends on runtime information. In this case, the IP ad-

dress of mysql is required to connect to the database.

Container images only capture file system changes

and thus do not provide information on how they have

been created. They are constructed of a set of layers

each described by a corresponding build specification

such as a Dockerfile. However, the TOSCA standard

does not allow the definition of build specifications

describing the construction of container images. To

resolve this issue, we introduced the concept of Con-

tained Nodes (Kehrer and Blochinger, 2018) to model

build specifications for each Node Template. There-

fore, a container Node Template such as wordpress

links a contained Node Template (cf. Listing 1, line

3). The wordpress build Node Template specifies the

build specification of the corresponding wordpress-

custom Docker Image (cf. Listing 2, line 4–9) re-

quired to deploy wordpress. In this case, the build

specification is a Dockerfile.

The containers memcached, mysql, and backup are

modeled in an analogous manner and specify their

Deployment Artifacts as well as configuration oper-

ations as explained above.

5.3 Runtime Environment Specification

The target runtime environment addressed by our

prototype is a TOSCA-based container management

system from previous work (Kehrer and Blochinger,

2018), which can be used to deploy a TOSCA-based

service bundle. We selected Consul to store con-

figuration and endpoint information in the environ-

ment, which provides both a key-value store to store

configuration data and service discovery mechanisms.

The Consul ecosystem provides a rich set of tools to

access stored data. To enable self-configuring mi-

croservices, we have to additionally select technolo-

gies used to bind configuration operations to events.

We chose ContainerPilot, which is an open-source

project developed by Joyent. ContainerPilot resem-

bles the UNIX concept of process supervision by pro-

viding a supervisor middleware for processes running

inside a software container. Besides, it provides inte-

gration with service discovery tooling, which we ap-

ply to bind event-triggers to configuration operations.

ContainerPilot is configured by passing a configura-

tion file, which contains the processes to be run. A

Docker Registry18 is employed as artifact repository,

i.e., to push and retrieve container images (cf. Fig-

ure 4).

5.4 Implementation

In this section, we outline how we implemented our

prototype in Java. Therefore, we describe the imple-

mentation counterparts of step 1–5 as defined in the

AUTOGENIC method (cf. Section 4).

Step 1: A TOSCA Parser loads the TOSCA-

based service bundle and transforms the Service Tem-

plate into an internal object. Our RequirementScan-

ner derives TRs from the Topology Template,

namely StoreKeyValueRequirements, KeyWatchRe-

quirements, and AttributeWatchRequirements. More-

over, the RequirementScanner scans the Dockerfiles

linked in the Service Template to identify Entry-

PointRequirements.

Step 2: We employ ContainerPilot version 3.1.1

as process supervisor for each container. A Container-

Pilot configuration file is used to create event-triggers

for configuration operations. The key-value pairs de-

scribed by StoreKeyValueRequirements are stored in

18https://hub.docker.com/ /registry.

Consul with an initial setup process executed on con-

tainer startup. Moreover, the executable captured in

an EntryPointRequirement is executed after the initial

setup process.

KeyWatchRequirements and AttributeWatchRe-

quirements require the installation of event-triggers.

Technically, we register separate background pro-

cesses in the ContainerPilot configuration file. These

background processes run Consul watches with the

Consul command line tool, which can be used to get

informed whenever a value changes. We use Con-

sul watches to trigger envconsul19 whenever an input

value of a configuration operation changes in Consul.

Envconsul then executes the implementation artifact

of the corresponding configuration operation and pro-

vides the inputs as environment variables. The result-

ing technological artifacts are a ContainerPilot con-

figuration file and scripts for the initial setup process.

Step 3: To create build specifications, we use a file

template for each Dockerfile, which installs a Consul

client, envconsul, and ContainerPilot. Additionally,

we add the artifacts generated in Step 2. The process-

ing is implemented based on Apache FreeMarker20,

which is an open-source template engine.

Step 4: A new contained Node Template is added

to each container Node Template, which is built on

top of the developer-supplied contained Node Tem-

plate and links the generated build specification. Be-

sides, the Deployment Artifacts of the container Node

Templates are updated with the name of the new con-

tainer images. The generated Service Template is

added to a newly generated service bundle, which

contains all build specifications and technological ar-

tifacts required to build the container images.

Step 5: To build container images, we assume a

Docker Engine running on the host. We connect to

the Docker Engine by using the Docker-Client21 li-

brary developed by Spotify. Docker-Client connects

to the Docker Engine through the default UNIX do-

main socket provided to control Docker-specific func-

tionality. We build the required container images de-

scribed by the generated build specifications and push

them to the artifact repository specified in the Topol-

ogy Template.

6 EVALUATION

To evaluate our prototype, we employ the formerly

described service bundle of our exemplary microser-

19https://github.com/hashicorp/envconsul.
20http://freemarker.org.
21https://github.com/spotify/docker-client.

vice (cf. Section 5.2). The underlying runtime en-

vironment specification is given in Section 5.3. We

present two experiments to analyze the overhead re-

sulting from the transformation performed by the AU-

TOGENIC Nexus prototype.

In the baseline experiment, we build all developer-

supplied container images specified in the service

bundle and measure the total generation time. We

define the total generation time as the accumulated

time, which is required to build these container im-

ages and to push the generated container images to the

artifact repository. In the transformation experiment,

we run the prototype to generate a self-configuring

service bundle and measure the total transformation

time. We define the total transformation time as the

elapsed time from the start of the prototype to the

point, where all steps of the AUTOGENIC method are

successfully completed. This also includes pushing

the generated container images to the corresponding

artifact repository (cf. Figure 4).

We executed our experiments on a CentOS 7 vir-

tual machine with 2 vCPUs clocked at 2.6 GHz, 4

GB RAM, and 40 GB disk running in our OpenStack-

based cloud environment. The virtual machine pro-

vides an OpenJDK Runtime Environment 1.8.0 and

Docker Engine 1.12.6. For building container im-

ages, we rely on the Docker Engine API v1.24. As

artifact repository, we run a private Docker Registry

v2.6 on localhost. We executed ten independent runs

for each experiment and measured the total generation

time and the total transformation time, respectively.

In the baseline experiment, we build a single con-

tainer image for each container. These container

images are built based on the build specification

specified in the service bundle. However, all con-

tainer images require base images from the Docker-

Hub. The wordpress container requires download-

ing php:5.6-apache22 with 377.7 MB, memcached re-

quires debian:stretch-slim23 with 55.24 MB, mysql

requires oraclelinux:7-slim24 with 117.6 MB, and

backup requires python:2.7.14-jessie25 with 679.3

MB. To ensure that we measure the total generation

time without caching, we cleared the Docker cache

and the Docker Registry before every run. In this con-

text, caching of container images relates to the inter-

mediate layers stored by Docker to speed up future

build processes. Based on the measurements, we cal-

culated an average total generation time of (882±38)

seconds.

In the transformation experiment, we ran our

22https://hub.docker.com/ /php.
23https://hub.docker.com/ /debian.
24https://hub.docker.com/ /oraclelinux.
25https://hub.docker.com/ /python.

prototype to measure the total transformation time.

Therefore, all required container images are built and

pushed to the artifact repository. This includes the

developer-supplied container images as well as con-

tainer images generated by the AUTOGENIC Nexus

prototype. Again, we cleared the Docker cache and

the Docker Registry before every run. Based on the

measurements, we calculated an average total trans-

formation time of (1349±16) seconds.

The transformation adds an average overhead in

size of 67.8 MB per container image. This is largely

related to ContainerPilot and Consul-specific tooling.

Note that the container images built in the baseline ex-

periment are not self-configuring. Additional manual

effort would be required to enable the same features,

thus also leading to larger image sizes.

In summary, the transformation applied by our

prototype results in an average overhead of 467 sec-

onds to enable the AUTOGENIC approach. However,

we enable software developers to implement their mi-

croservices independent of operational technologies,

which saves time during development. Moreover, our

model-based approach leads to several benefits such

as portability of microservice implementations and

the separation of concerns for software developers

and operations personnel (cf. Section 3).

The overhead measured is basically related to

building additional container images, which include

the required self-configuration mechanisms. Note

that the measurements depend on the size of required

and generated container images, the network band-

width for downloading the required base images, and

the location of the artifact repository. Thus, the re-

ported values may be different in a real world sce-

nario. Furthermore, we identified several opportuni-

ties to speed up the transformation performance such

as building container images concurrently and stor-

ing required software packages locally. Obviously,

caching techniques offer another opportunity for per-

formance tuning.

7 RELATED WORK

Our approach aims at facilitating the development of

self-configuring microservices by introducing an ab-

straction layer between software developers and op-

erations personnel. Implementing the AUTOGENIC

method leads to a self-service tool that enables de-

velopers to take responsibility for the dynamic con-

figuration of their microservices independently of the

runtime environment. Using self-service tools and

automation is a commonly applied approach for sup-

porting DevOps (Hüttermann, 2012).

Microservices require decentralized management

and prefer choreography over orchestration (Fowler,

2017; Newman, 2015; Zimmermann, 2017). The au-

thors of (Schermann et al., 2016) state that more re-

search on choreography rather than orchestration is

required. Self-configuring microservices are a solu-

tion to ensure dynamic configuration without relying

on centralized orchestration. Following the AUTO-

GENIC approach, configuration is managed by each

container and thus executed in a decentralized, event-

based manner.

Several approaches exist to build microservices

with decentralized configuration capabilities. In (Tof-

fetti et al., 2015) and (Toffetti et al., 2017) dis-

tributed in-memory key-value stores are employed to

communicate changes among components. Whereas

this results in a similar technical implementation, our

model-based approach contributes to the ease of de-

velopment of self-configuring microservices. Thus,

developers are relieved of the burden of wiring their

microservice implementations with operational tech-

nologies. In (Stubbs et al., 2015), the authors present

a solution to the service discovery problem based on

Serf26. Their approach proposes an additional Serfn-

ode container, which manages a required container in-

stance. In contrast, we add an environment-specific

supervisor (e.g., ContainerPilot) directly to an exist-

ing container image. Whereas Serfnodes do not re-

quire building new container images, they require ex-

tra configuration and only solve the service discov-

ery problem. Moreover, the presented solution does

not provide the same abstraction level compared to

our model-based approach, which uses configuration

models to define operational behavior on a higher

level.

Microservice chassis27 such as Spring Cloud28

might be used to dynamically configure microser-

vices. However, microservice chassis are bound to

a specific programming language and are limited

to supported operational tooling. Netflix Prana29

provides a side car for services based on the Net-

flixOSS30 ecosystem. This enables the use of Java-

based NetflixOSS libraries for microservices written

in other programming languages. Registrator31 en-

ables service discovery features for Docker contain-

ers by watching the runtime environment. In compar-

ison, we provide a simple means to software devel-

26https://www.serf.io.
27http://microservices.io/patterns/microservice-

chassis.html.
28http://projects.spring.io/spring-cloud.
29https://github.com/Netflix/Prana.
30https://netflix.github.io.
31https://github.com/gliderlabs/registrator.

opers and separate the logical definition of configura-

tion operations from their technical implementation.

Following this model-based approach enables the use

of different technological solutions depending on the

target runtime environment.

8 CONCLUSION

In this paper, we presented the AUTOGENIC approach

to automatically generate self-configuring microser-

vices. We introduced a novel approach to decouple

software developers and operations personnel by sep-

arating their concerns. This leads to microservice

development independent of the target runtime en-

vironment and thus also enables flexibility for oper-

ations personnel with respect to technological deci-

sions and changes. Furthermore, we presented the

AUTOGENIC method, which describes the steps to

generate self-configuring microservices. The method

is described on a conceptual level and thus applicable

to any modeling language and runtime environment

fulfilling the proposed assumptions. We validated our

approach by implementing a prototype based on the

TOSCA standard and state of the art technologies.

In the future, we plan to investigate use cases be-

yond dynamic configuration. Our prototype provides

evidence that also monitoring features might be au-

tomatically enabled for developer-supplied microser-

vices. Following the AUTOGENIC approach, required

monitoring endpoints can be added in a transparent

manner thus hiding the monitoring solution employed

from software developers.

ACKNOWLEDGEMENTS

This research was partially funded by the Ministry

of Science of Baden-Württemberg, Germany, for the

Doctoral Program ’Services Computing’.

REFERENCES

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Mi-
croservices architecture enables devops: Migration to
a cloud-native architecture. IEEE Software, 33(3):42–
52.

Fowler, M. (2017). Microservices Resource Guide.

Hüttermann, M. (2012). DevOps for Developers. Apress.

Kehrer, S. and Blochinger, W. (2018). Tosca-based con-
tainer orchestration on mesos. Computer Science -
Research and Development, 33(3):305–316.

Kookarinrat, P. and Temtanapat, Y. (2016). Design and im-
plementation of a decentralized message bus for mi-
croservices. In 2016 13th International Joint Confer-
ence on Computer Science and Software Engineering
(JCSSE), pages 1–6.

Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-
native applications after 10 years of cloud computing
- a systematic mapping study. Journal of Systems and
Software, 126:1 – 16.

Lewis, J. and Fowler, M. (2014). Microservices a definition
of this new architectural term.

Leymann, F., Breitenbücher, U., Wagner, S., and Wettinger,
J. (2017). Native cloud applications: Why monolithic
virtualization is not their foundation. In Helfert, M.,
Ferguson, D., Méndez Muñoz, V., and Cardoso, J., ed-
itors, Cloud Computing and Services Science, pages
16–40, Cham. Springer International Publishing.

Newman, S. (2015). Building Microservices. O’Reilly Me-
dia, Inc., 1st edition.

OASIS (2013). Topology and orchestration specifi-
cation for cloud applications (tosca) version 1.0,
committee specification 01. URL: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-
cs01.html.

OASIS (2016). Tosca simple profile in yaml ver-
sion 1.0, committee specification 01. URL:
http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-
YAML-v1.0-cs01.html.

O’Hanlon, C. (2006). A conversation with werner vogels.
Queue, 4(4):14:14–14:22.

Pahl, C., Brogi, A., Soldani, J., and Jamshidi, P. (2017).
Cloud container technologies: a state-of-the-art re-
view. IEEE Transactions on Cloud Computing,
PP(99):1–1.

Pahl, C. and Jamshidi, P. (2016). Microservices: A system-
atic mapping study. In Proceedings of the 6th Interna-
tional Conference on Cloud Computing and Services
Science - Volume 1 and 2, CLOSER 2016, pages 137–
146, Portugal. SCITEPRESS - Science and Technol-
ogy Publications, Lda.

Schermann, G., Cito, J., and Leitner, P. (2016). All the
services large and micro: Revisiting industrial prac-
tice in services computing. In Norta, A., Gaaloul,
W., Gangadharan, G. R., and Dam, H. K., editors,
Service-Oriented Computing – ICSOC 2015 Work-
shops: WESOA, RMSOC, ISC, DISCO, WESE, BSCI,
FOR-MOVES, Goa, India, November 16-19, 2015,
Revised Selected Papers, pages 36–47, Berlin, Heidel-
berg. Springer.

Stubbs, J., Moreira, W., and Dooley, R. (2015). Distributed
systems of microservices using docker and serfnode.
In 2015 7th International Workshop on Science Gate-
ways, pages 34–39.

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F.,
and Edmonds, A. (2015). An architecture for self-
managing microservices. In Proceedings of the 1st
International Workshop on Automated Incident Man-
agement in Cloud, AIMC ’15, pages 19–24, New
York, NY, USA. ACM.

Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., and
Bohnert, T. M. (2017). Self-managing cloud-native
applications: Design, implementation, and experi-
ence. Future Generation Computer Systems, 72(Sup-
plement C):165 – 179.

Turnbull, J. (2014). The Docker Book: Containerization is
the new virtualization. James Turnbull.

Zimmermann, O. (2017). Microservices tenets. Computer
Science - Research and Development, 32(3-4):301–
310.

