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Abstract Satciety is a distributed parallel satisfia-
bility (SAT) solver which focuses on tackling the domain-
specific problems inherent to one of the most challeng-
ing environments for parallel computing — Peer-to-
Peer Desktop Grids. Satciety e�ciently addresses is-
sues related to resource volatility and heterogeneity,
limited node and network capabilities, as well as non-
uniform communication costs. This is achieved through
a sophisticated distributed task pool execution model,
problem size reduction through multi-stage SAT for-
mula preprocessing, context-aware memory management,
and adaptive topology-aware distributed dynamic learn-
ing. Despite the demanding conditions prevailing in Desk-
top Grids, Satciety achieves considerable speedups
compared to state-of-the-art sequential SAT solvers.

Keywords SAT Solving · Desktop Grid · Peer-to-
Peer · Distributed Systems

1 Introduction

Today’s pervasiveness of information technology results
in a plethora of exploitable computing power [1]. This
has stimulated a new discipline of Grid research, called
Desktop Grid computing [2]. Desktop Grid computing
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aims at harnessing idle resources of desktop computer
systems for tackling resource intensive problems. Small-
scale installations, e.g., comprising the workstations of
a department [3], as well as large-scale, Internet-wide
approaches [4] have been successfully implemented.

Desktop Grids di↵er significantly from traditional
parallel systems. Particularly, the aggregated resources
join and leave the Grid in an unpredictable manner.
This phenomenon is called volatility [2,5,6] and is much
more pronounced than in other kinds of parallel or
distributed systems like compute clusters. The nodes
of a Desktop Grid are primarily used for other pur-
poses. This non-dedication considerably contributes to
the observed volatility. Hence, a Desktop Grid system
not only needs to handle occasional error conditions
but must be explicitly tailored to cope with a con-
stant flux in resource availability. Another major dif-
ficulty is heterogeneity: While cluster nodes are most
often virtually identical, nodes of a Desktop Grid are
di↵erent concerning hard- and software configuration.
To complicate matters further, resource usage may be
constrained by the host owner. Finally, Desktop Grids
are typically operated over WANs, MANETs or the In-
ternet. This causes non-uniform communication costs
and often comes with limited connectivity. The latter
is typically due to NAT devices and restrictive firewalls.
Volatility, heterogeneity, and non-uniform communica-
tion costs turn Desktop Grids into one of the most chal-
lenging environments for distributed computing. Deliv-
ering sustained computing power in this setting poses
enormous challenges to system and application design-
ers.

Conceptually, Desktop Grids are either based on a
Client/Server or on a Peer-to-Peer (P2P) interaction
model. Prominent examples for Client/Server based plat-
forms are Boinc [4] and Entropia [3]. JNGI [7] and P3
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[8] by contrast are typical representatives of P2P plat-
forms. The Client/Server approach represents a proven
and well understood interaction model. Such systems
have reached a considerable degree of maturity and sta-
bility. However, due to their centralized organization,
parallel programming models requiring complex inter-
action patterns among the nodes cannot be realized ef-
ficiently. This considerably limits the range of appli-
cations which can be deployed on Client/Server based
Desktop Grids. In contrast, P2P Desktop Grid comput-
ing permits direct interaction among arbitrary nodes
by leveraging state-of-the-art concepts from the realm
of distributed systems. Thus, the P2P approach lays
the ground for advanced parallel programming models
supporting non-trivial parallelism. However, there is lit-
tle practical experience so far concerning the question
which classes of applications can actually benefit from
P2P Grid computing.

In this article, we deal with parallel Boolean satis-
fiability (SAT) solving on P2P Desktop Grids. Partic-
ularly, we present the architecture and design of Sat-

ciety, which is a parallel SAT solver implemented on
top of our P2P Grid platform Cohesion [9].

SAT is the problem of finding a variable assign-
ment such that a given Boolean formula evaluates to
true, respectively to prove that no such assignment
exists. SAT was the first problem shown to be NP-
complete [10]. Besides this central role in theoretical
computer science, many real world problems could have
been tackled in recent years by encoding them as SAT
instances. Prominent examples can be found in elec-
tronic design automation [11,12,13], artificial intelli-
gence [14], scheduling [15], and cryptography [16]. De-
spite the tremendous improvements in SAT solving meth-
ods achieved in the last decade, there are still unsolved
SAT problem instances in all major application fields.
Particularly, the ever increasing complexity of chip de-
signs is a source of extremely hard SAT problem in-
stances which are far too complex to be solved by state-
of-the-art sequential SAT solvers. In this situation, par-
allel computing is a promising option to enable further
improvements. Our specific goal is to use the massive
computational power of Desktop Grids to achieve a sig-
nificant performance boost. In particular, we make the
following contributions:

By combining existing and new methods from the
realm of parallel and distributed systems, we were able
to realize a distributed task pool execution model that
is resilient to a high degree of volatility and forms the
conceptual basis for executing non-trivial task-parallel
applications.

Our work shows that highly optimized parallel search
algorithms like SAT solving are prime examples of par-

allel applications that significantly take advantage of
the unrestricted interaction patterns enabled by the
P2P approach to Desktop Grid computing.

Moreover, by enabling parallel SAT solving on Desk-
top Grids, our article contributes to settling the ques-
tion which classes of problems can profit from Desktop
Grid computing. In particular, we demonstrate that not
only embarrassingly parallel problems can be tackled by
Desktop Grids.

The rest of this article is organized as follows: In Sec-
tion 2 we give a brief account of state-of-the-art SAT
solving methods and basic parallelization techniques.
Subsequent to an overview of Satciety’s architecture
in Section 3, we give a detailed description of Satci-

ety’s inner workings in Sections 4-8. We report on per-
formance measurements in Section 9 and discuss related
work in Section 10. Finally, Section 11 concludes the ar-
ticle by summarizing our contributions and identifying
directions for future research.

2 The SAT Problem

2.1 Basic Definitions

The Boolean satisfiability (SAT) problem asks whether
one can find a variable assignment for a Boolean for-
mula F such that F evaluates to true.

We assume that F is given in conjunctive normal

form (CNF). In CNF, a formula is composed of con-
junctions (^) of clauses. A clause is the injunction (_)
of one or more literals, and a literal is a variable or
the complement of a variable. By convention, variables
are numbered consecutively and are represented as xi

with i 2 {1, . . . , n}. Note that all Boolean formulae can
easily be transformed into the CNF representation.

Consider the following Boolean formula in CNF :

F = (x1 _ x3) ^ (x2 _
literalz}|{
x3 ) ^ (x1 _ x2 _ x3| {z }

clause

) ^ x3.

The variable assignment x1 ! false, x2 ! true, x3 !
true represents a satisfying assignment of F . For brevity,
one uses literals which are implicitly assumed to be true
to describe a variable assignment. Thus, the above as-
signment can be expressed as (x1, x2, x3).

A fundamental property of a formula in CNF is that
it is satisfiable i↵ in each clause at least one literal eval-
uates to true. If for a clause all but one literal have
already been assigned to false, the remaining literal
must be assigned to true in order to satisfy the clause.
Such clauses are called unit clauses. A situation when
all literals of a clause are assigned to false is called a
conflict, and the clause is called a conflicting clause.
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2.2 DPLL Based SAT Solving Algorithms

The original Davis-Putnam-Logemann-Loveland (DPLL)
SAT solving algorithm [17,18] still serves as the algo-
rithmic framework of modern complete1 SAT solvers.
However, in recent years sophisticated heuristics have
been incorporated which are capable to significantly
prune the search space for a wide spectrum of problem
instances. Most beneficial advances have been achieved
by employing dynamic learning and conflict driven back-

tracking [19].
Figure 1 outlines the overall structure of a mod-

ern DPLL based SAT solving algorithm (in an iterative
form). We will restrict our discussion of the DPLL algo-
rithm to a top-level treatment. A complete description
can be found in [20] or [21].

while true do
if ( decide()==VARIABLE ASSIGNED) then

while ( propagate()==CONFLICT) do
if (current level==0) then

return UNSAT ;

else
new level=analyze conflict();
back track(new level);

else
return SAT ;

Fig. 1 Top-level structure of the DPLL algorithm with Dynamic
Learning and Conflict Driven Backtracking

Basically, the DPLL algorithm is a search process
with backtracking. Partial variable assignments are spec-
ulatively extended to find a satisfying assignment. The
procedure decide() determines according to a heuris-
tic [22,23] which unassigned variable should be cho-
sen next to extend the current partial variable assign-
ment. Each such decision is recorded on an assignment

stack along with an associated decision level. The de-
cision level of the first decision made is 1. The proce-
dure propagate() infers additional assignments that
are logical consequences of the current partial variable
assignment using a technique called unit propagation:
After making a new decision, some clauses may have
become unit clauses, which imply new assignments as
explained above. Such deduced assignments are called
implications. They are also recorded on the assignment
stack at the current decision level. Thus, the assignment
stack tracks the current state of the search process. Unit
propagation terminates when either no unit clauses ex-
ist or a conflict occurs. In the first case, a new decision

1 In contrast to incomplete solvers, complete solvers are able
to prove unsatisfiability of a SAT formula.

is made starting the next decision level. In the second
case, the conflict is analyzed and resolved by the pro-
cedure analyze conflict(). Basically, it performs two
tasks:

– Dynamic Learning: A new clause called lemma is
constructed by analyzing the reasons for the current
conflict. A lemma reflects a minimal subset of the
current assignments that implies the conflict. When
appended to the input formula, a lemma prevents
the search process from reproducing the same con-
flict in other regions of the search space. Problem
clauses and lemmas constitute the clause database.
There are di↵erent schemes for deriving lemmas [24].
However, lemmas are always inferred by resolution
and are logical consequences of the clause database.
Thus adding a lemma to the input formula does
not a↵ect the correctness of the DPLL algorithm.
For the same reason, lemmas can be safely removed
from the clause database, e.g., for saving memory.

– Conflict Driven Backtracking: By construction,
a lemma is initially a conflicting clause. The back-
tracking level is determined as the lowest level at
which the lemma becomes a unit clause. Note that
at this level the current conflict is also resolved. The
procedure back track() releases all assignments re-
corded on the assignment stack up to the computed
backtracking level. The newly added lemma, which
is now a unit clause, takes the search to a new di-
rection.

When backtracking reaches decision level 0, the cur-
rent lemma forces a variable assignment and possibly
additional implications at level 0. Such variable assign-
ments are called top-level assignments. Since top-level
assignments do not depend on any decision, they are a
necessary condition for the formula to be satisfied and
are fixed for the rest of the search process. As a conse-
quence, a conflict at decision level 0 (top-level conflict)
cannot be resolved by releasing assignments. In that
case the input formula is unsatisfiable. In contrast, if
all variables have been assigned without a conflict, the
input formula is satisfiable.

2.3 Basic Techniques for Parallel SAT Solving

2.3.1 Parallel Search Process

An important technique for the design of parallel al-
gorithms which search in a space of possible solutions
is exploratory decomposition [25]. The basic principle of
this technique is to split up the search space into several
disjoint subspaces to be treated in parallel.
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Fig. 2 Exploratory problem decomposition for parallel SAT
solving.

We can employ the exploratory decomposition tech-
nique for parallel SAT solving by introducing a splitting
operation on the assignment stack. Basically, out of the
current assignment stack two stacks are generated, each
representing a disjoint region of the search space (see
Figure 2). One of them is actually a slight modification
of the original assignment stack, such that the split-
ting operation can be carried out without restarting
the solving process. The new assignment stack holds all
variable assignments from level 0 of the original stack,
since they are fixed for the whole search process. For
splitting the search space we select the decision variable
on decision level 1 of the original stack and include it in
the complementary phase in the new assignment stack.
Since for this variable now both phases are checked, we
can fix the corresponding assignments by moving them
to decision level 0 in both stacks. As a consequence, the
implications of the selected decision can also be fixed in
the original assignment stack. This splitting operation
introduced by Zhang et al. [26] has become standard
for parallel SAT solving on distributed memory archi-
tectures (see e.g. [27,28,29]).

While exploratory decomposition yields disjoint sub-
problems, their individual size cannot be predicted, since
the e↵ectiveness of the applied heuristics for pruning
the search space can di↵er considerably for individual
subproblems. This induces a high degree of irregular-
ity of the parallel computation. Consequently, dynamic
problem decomposition and dynamic load balancing is
required in order to avoid significant processor idling.
Thus, we must continuously apply the splitting opera-
tion and balance the resulting sub-problems among the
processors.

The parallel algorithm terminates with the result
UNSAT when the outcome of all generated subproblems
is UNSAT. If the result of one subproblem is SAT the
parallel algorithm terminates with the same result and
the computation of all other subproblems is canceled.

2.3.2 Distributed Dynamic Learning

The dynamic learning process of modern SAT solvers
relies on accumulated knowledge continuously deduced
during the solving process. Employing exploratory de-
composition techniques in a distributed-memory set-
ting results in a (partially overlapping) partition of the
clause database, consisting of several distributed clause
databases. All clause databases comprise the problem
clauses and lemmas which have been derived locally.
Since dynamic learning can considerably prune the search
space, it is crucial to exchange lemmas among the clause
databases in order to exploit the full potential of this
technique. This establishes a distributed dynamic learn-

ing process. It is orthogonal to the parallelization of
the backtracking search (by exploratory decomposition)
and specifically addresses the deduction part of modern
SAT solving methods.

Exchanging lemmas synchronously among the clause
databases (for example by an SPMD style all-to-all
broadcast operation) causes significant processor idling
due to the high irregularity of the solving process. More-
over, the total amount of deduced lemmas increases
linearly with the number of processors. Thus, a total
exchange approach doesn’t scale. Consequently, for re-
alizing an e↵ective distributed learning process an asyn-
chronous and selective communication method must by
employed.

3 Overall Architecture

Satciety is realized as a three-tiered architecture con-
sisting of the following tiers:

1. The core of Satciety is aDistributed SAT solver

especially tailored for use in P2P Desktop Grid envi-
ronments. It is built on top of our versatile P2P Grid
system platform Cohesion and our network sub-
strate for high-performance computing Orbweb.
The parallel SAT solver implements dynamic prob-
lem decomposition based on a distributed task pool
which is capable of handling volatility and random
faults. For dynamic load balancing, tasks are inter-
changed in a compressed resource-friendly encod-
ing. Termination detection is accomplished by us-
ing a replication-resilient variant of the fixed en-
ergy algorithm. The solver realizes a distributed dy-
namic learning process that adapts to bandwidth-
utilization constraints and instance-specific lemma
generation rates. To protect host systems from mem-
ory overload, Satciety uses a three-stage memory
management approach that does not compromise
completeness of the solver.
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2. A J2EE Application Server constituting the mid-
dle tier of Satciety is responsible for queue man-
agement and job preprocessing. The latter includes
SAT formula simplification through variable and clause
elimination, transcoding to a space-e�cient structure-
preserving replacement of the commonly used DI-
MACS format, and e�cient instance provisioning
over a P2P file sharing protocol.

3. A Web-based GUI allows for real-time interac-
tion with Satciety over a browser. Multiple users
can concurrently submit, monitor, and control their
SAT jobs.

The functionality of the first two tiers is described in
more detail in the following sections: Section 4 quickly
summarizes the features of Cohesion and Orbweb as
far as they are relevant in the context of this article. Sec-
tion 5 motivates the necessity for and breaks down the
functionality of Satciety’s distributed task pool. The
anatomy of a SAT task and related optimizations are
presented in Section 6. Section 7 delineates the concept
of topology-aware adaptive lemma exchange. Section
8 is dedicated to the description of the preprocessing
pipeline operated by the middle tier application server.

4 P2P Grid System Foundations

4.1 Cohesion

Cohesion is our modular system platform for P2P
Desktop Grid computing. It provides essential services
for building sophisticated churn-resistant and fault-tolerant
applications that are highly integrated with the host
system to ensure an unobtrusive coexistence with user
processes. An in-depth treatment of the system archi-
tecture can be found in [9].

Cohesion provides group membership management
[30], a failure detection service, and a highly config-
urable application container [31]. Group membership
management is essential for almost all distributed al-
gorithms as it provides the ability to organize the set
of participating nodes into dynamic functional subsets
and to make nodes within a group visible to each other
according to an application-specific topology. Failure
detection is orthogonal to group membership manage-
ment. It allows to determine whether a node left a group
intentionally or as a consequence of failure. Member-

ship views [32] abstract from concrete group manage-
ment and failure detection mechanisms and expose the
current set of known non-faulty peers to the applica-
tion. Thus, a membership view reflects the availability
of group members. The application container of Co-

hesion controls the lifecycle of an application based on

arbitrarily complex combinations of environmental con-
ditions, like system load, time of day, or mouse move-
ment. As described in Sections 5 and 6, we leverage
all these services to implement Satciety’s distributed
taskpool.

4.2 Orbweb

Orbweb [33] is our network substrate for high-performance
computing in Peer-to-Peer Grids. It is used as the un-
derlay for Cohesion and belongs to the class of un-
structured hybrid P2P networks. In contrast to pure
P2P, the hybrid approach is characterized by the fact
that part of the network functionality is delegated to
a small number of distinguished peers usually called
superpeers. More precisely, Orbweb delegates group
management and failure detection to superpeers, thus
allowing for rapid membership view updates, which is
essential for achieving good e�ciency for many dis-
tributed algorithms.

Orbweb builds on and extends the open eXtensible

Messaging and Presence Protocol (XMPP) [34]. It sup-
ports direct inter-peer connections that are established
based on tra�c pattern analysis. Furthermore, a prob-
abilistic topology-aware decentralized groupcast imple-
mentation with superpeer resource usage that is con-
stant with respect to the size of the group is provided.
Improved protocol e�ciency is achieved by a standard-
ized binary encoding of XMPP messages. As substan-
tiated by a detailed experimental analysis, these op-
timizations significantly improve the applicability, the
performance, and the scalability of Orbweb.

The key feature of Orbweb with respect to Satci-

ety is, that it o↵ers fine-grained control over the com-
position of membership views via interchangeable view

managers. As described in Section 7, Satciety deploys
a custom view manager to realize topology-awareness
for e�cient lemma exchange.

5 Distributed Task Pool

Exploratory decomposition structures a parallel pro-
gram execution into a set of interacting tasks. Each
of these tasks consists of a sequence of operations that
can include the creation of new tasks which may later
be transferred to a di↵erent compute node for load-
balancing. A task pool is a shared data structure to store
and manage the tasks created during execution. All
compute nodes have access to the task pool such that
they can extract tasks for execution and enqueue newly
created tasks in case the currently executing task dy-
namically creates new subtasks. A task pool can be or-
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ganized in a centralized or in a distributed manner. In a
centralized approach — used by many existing state-of-
the-art parallel SAT solvers (see Section 10) — a mas-
ter node maintains a global task queue from which idle
processors can fetch tasks. The queue is refilled with
tasks that result from worker-side problem decomposi-
tion triggered by the master whenever the global task
queue becomes empty. A major drawback of centralized
pools is that the master node is a sequential bottleneck
as tasks must be transferred from and to the master
node. This limitation is especially impedimental in the
case of SAT solving as a task description may become
very large for real-world SAT instances with millions of
variables. As the underlying communication platform
supports direct Peer-to-Peer exchange of tasks, Satci-
ety employs a distributed task pool model, in which a
pool is located on every compute node. The downside
of this decentralized approach is that the implemen-
tation of essential aspects of the control logic become
much more challenging. These aspects are load balanc-
ing, fault tolerance, and termination detection. Each
one is discussed in detail in the following sections.

5.1 Load Balancing

The selection of an appropriate load balancing strat-
egy is governed by the properties of the problem to
be solved and to the same extent by the environment
the computation is executed in. These properties are

task size, inter-task dependencies, communication lo-
cality and processor heterogeneity (see Figure 3). Par-
allel SAT solving on Desktop Grids is characterized by
unpredictable task sizes, inter-task dependencies with
a structure that changes dynamically, arbitrary com-
munication patterns and a dynamically changing set
of compute nodes potentially experiencing concurrent
loads. Hence, it belongs to a very demanding class of
task-parallel applications.

For this kind of applications Blumofe and Leiserson
[35] have shown that a simple randomized algorithm is
optimal with high probability. Well-known representa-
tives of these algorithms are random stealing and ran-

dom pushing. While with the former idle nodes pull or
steal tasks from the queue of randomly selected neigh-
bors, the latter is the opposite approach where nodes
with excess tasks push some of them to randomly se-
lected nodes. We use random stealing as it is demand-
driven and thus avoids unnecessary transferal of the
potentially large SAT tasks.

The algorithmic aspects of problem decomposition
for parallel SAT solving have been discussed in Section
2.3. Pull-based load balancing and exploratory decom-
position together solve the problems associated with
performance heterogeneity across processors as more
powerful hosts dynamically split o↵ tasks from less pow-
erful ones when they become idle.

In the context of load balancing another important
question is, when to trigger task decomposition. In Sat-

ciety we prefer on demand task creation rather than
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proactive problem decomposition. With on-demand de-

composition we can limit undesirable growth of the ef-
fective search space caused by needless decomposition
operations. As described in Section 2.2, a newly learned
lemma prevents the search from making the same un-
profitable work over and over again in other parts of
the search space. By splitting tasks eagerly, the newly
created task cannot profit from this extra knowledge,
at least if it is transferred to another node for execu-
tion. Consequently, part of the search space will be tra-
versed more often than necessary, resulting in the men-
tioned growth of the e↵ective search space. Technically
on-demand decomposition is realized by having the de-
composition component listening for incoming balance
requests emitted by remote load balancers. On arrival
of such a request, the SAT solver is instructed to asyn-
chronously split o↵ and enqueue a new task that is fi-
nally dequeued, marshalled and sent to the requesting
node by the load balancing component.

5.2 Fault Tolerance

As discussed initially typical Desktop Grid environments
are highly volatile and exposed to increased node and
network failure probabilities. Due to its high irregular-
ity, parallel SAT solving results in tasks with execution
times ranging from seconds to days. Relaunching the
whole computation in the probable case of failure is no
option. Thus, Satciety employs a fault tolerance algo-
rithm that tracks tasks over their entire lifespan until
they are finished or canceled. Using Orbweb as the un-
derlying communication substrate for Cohesion, our
fault tolerance algorithm assumes an environment that

1. ensures atomic message transmission, i.e., a mes-
sage is delivered completely or not at all.

2. is asynchronous, as there is no bound on message
delays, clock drift, and the time necessary to exe-
cute a step. As Orbweb maintains only a limited
number of direct peer-to-peer connections selected
based on tra�c analysis, messages may even get lost
with small probability in case one of these connec-
tions is displaced and thus closed while a message
is in transit.

3. belongs to the class of crash-fault systems, as crashed
Orbweb nodes recover with a new identity and thus
logically never come back.

4. has a perfect failure detector [36]. In this con-
text, perfect means that no process is suspected be-
fore it crashes (strong accuracy) and eventually ev-
ery process that crashes is permanently suspected
by every non-faulty process (strong completeness).
This is accomplished by defining aliveness as being

P1a: When a task tj is created on node pi.
begin

send Update(tj , NULL, pi) to pc
end

P1b: When a task tj is finished on pi.
begin

send Update(tj , pi, NULL) to pc
end

P1c: When a task tj is split on pi creating a new task tk.
begin

send Update(tk, NULL, pi) to pc
send Update(tj , pi, pi) to pc

end

P2: When pi receives a Balancing-Event(tk, pj) indicating
that task tk is going to be transferred to pj .

begin
send Update(tk, pi, pj) to pc

end

P3: When pi receives a Locate(tj) message.
begin

if tj 2 local task queue then
send Update(tj , NULL, pi) to pc

end

end

C1: When pc receives an Update(tk, pi, pj).
begin

if pi 6= NULL then
CancelRestoration(tk)
location(tk) = NULL

end
if pj 6= NULL then

location(tk) = pj
if pj /2 V iew(pc) then

ScheduleRestoration(tk, T )
end

end

end

C2: When pc receives a ViewUpdate(pj /2 V iew(pc)).
begin

foreach ti : location(ti) = pj do
send Locate(ti) to all pi 2 P by groupcast.
ScheduleRestoration(ti, T )

end

end

C3: When pc receives a Balancing-Request(pj) from pj .
begin

execute C2(pj)
end

Fig. 4 Satciety’s task tracking algorithm (location(tk) contains
the current location of a task tk, ScheduleRestoration(ti, T )
(re-)schedules the restoration of task ti to start after a config-
urable amount of time T on pc, CancelRestoration(ti) cancels
a previously scheduled restoration for a task ti).
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connected to the Orbweb superpeer. As soon as
the XMPP connection between a node pi and the
superpeer is closed by either side intentionally or
caused by failure, the departure of pi is communi-
cated as a ViewUpdate(pi) event to all nodes that
are still alive, i.e., connected to the superpeer.

Figure 4 shows the algorithm as a set of event-driven
actions. We assume that the system consists of a dy-
namic set of processors P . From the time when the ini-
tial task is submitted on the coordinator, there are eight
events that may trigger an action. Three of them (C1-
C3) are relevant to a stable coordinator node pc 2 P

which keeps record of the locations of all unprocessed
tasks and is responsible for their restoration in case of
failure. A change of the location of a task is communi-
cated to the coordinator through Update(task, psource,
ptarget) messages. While psource = null means that the
specified task is created on node ptarget, either as the
first task of a new job or as the result of a splitting
operation, ptarget = null means that the task has been
processed on psource and is thus removed from the task
pool.

P1a is executed when the initial task is submitted
and when a task is restored by the algorithm on node
pc. P1b is invoked when a task has been finished and
thus is removed from the local and consequently from
the distributed task pool. When a splitting operation
creates a new task, P1c is executed, which actually
consists of two individual update operations: First, an
Update message for the newly created task is sent to
the coordinator. Second, the task from which the new
task has been split o↵ is updated. While omitting the
latter step does not a↵ect correctness of the algorithm,
it may severely impact performance in case the parent
task is lost subsequently, as then all the work – includ-
ing that split o↵ – has to be done again, which could
be the whole job in the worst case. Note the fact that if
the update for the original task is correctly reported but

the Update message for the new task gets lost, a crash
of the splitting node would be unrecoverable. Thus, it
is indispensable to guarantee that either both or none
of the updates are performed. As Orbweb guarantees
that message delivery is atomic, this requirement can
be satisfied easily by using a single message for trans-
mitting both updates. P2 is executed just before a task
is transferred to a new node as part of a load balancing
e↵ort.

C1 is executed by the coordinator on receipt of an
Updatemessage. There are three di↵erent possible sce-
narios: (a) The task is unknown, i.e., has been newly
created. This is a result of some node pj executing P1a.
(b) The task is being migrated to a new node, which is
signaled by some node pj executing P2. (c) The task
should be deleted as it has been finished by some node
pj consequently executing P1b. In every case the co-
ordinator updates the location for the respective task
accordingly.

C2 is executed when a node departs either deliber-
ately or by failure. Satciety relies on the group mem-
bership and fault detection services provided by the
underlying Cohesion platform to create the trigger-
ing ViewUpdate events. On receipt of such an event
the coordinator might assume that the tasks located at
the vanishing node are lost. However, this is not neces-
sarily true as the underlying communication system is
asynchronous, which means that an Update message
sent by the vanishing node on task transferal may be
still in transit. Hence, the restoration of the task is de-
layed for a specified period T that is large compared to
the average round-trip time in the underlying network,
which can be in the order of seconds in typical net-
works spanned by Desktop Grids, like MANs or WANs.
On receipt of a delayed Update message the scheduled
restoration is canceled as part of the execution of C1.

While losing tasks is e↵ectively prevented by Sat-

ciety, task duplication is not. This is not critical as
performing work twice does not a↵ect correctness in
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the context of SAT solving, however it a↵ects perfor-
mance. Figure 5a depicts a scenario where a task T1.1

is duplicated. While the task transferal message from pi

to pj containing T1.1 reaches its destination, the update
emitted to pc by execution of rule (P2) gets lost. When
pi crashes subsequently, the coordinator incorrectly as-
sumes T1.1 was still at pi and triggers its restoration.
To reduce the probability of such false positives, the
coordinator delays restoration of the task and emits a
Locate request to all nodes in the system first. If the
task is present in the task queue of a node, it responds
with a corresponding Update message (P3) so that
the coordinator can update its location and cancel its
restoration. If no node responds within a given period
or the response gets lost as depicted in Figure 5a the
coordinator assumes that the task is actually lost and
restores it.

There are scenarios in which a lost task won’t get
restored without an additional rule C3. Consider the
situation depicted in Figure 5b: while performing a load
balancing operation both the Update message sent by
a source node pi to the coordinator pc in P2 and the
task transferal message carrying the task T1.1 sent to
the target node pj get lost. When pi remains stable, i.e.
never leaves the grid, the coordinator would never try
to restore the task as C2 would never be executed. To
prevent such situations Satciety exploits the fact that
a node will emit balancing requests only if its local task
queue is empty. Hence, the coordinator can infer that
T1.1 is not in pi’s task queue any more when receiving
a balancing request from pi. In case no new location
has been reported for T1.1, the coordinator assumes the
task is lost and schedules its restoration in case a lo-
cation attempt – performed to reduce false positives as
described above – remains ine↵ective.

The actual structure of the Update messages is
omitted from the algorithm in Figure 4 for simplicity.
In fact they never carry the full set of top-level assign-
ments constituting a task (see Section 2.3.1): The initial
task, which has an empty set of top-level assignments,
is submitted on the coordinator allowing P1a to be per-
formed locally without external communication. When
the P1b (finished task), P2 (transfer from one node
to another), and P3 are executed, the task has been
sent to the coordinator previously. Thus, it is su�cient
to transfer a unique identifier attached to each task
on creation that can be used by coordinator to locate
the associated task within the task location table. For
the two remaining updates performed in P1c, Satci-
ety exploits the fact that the top-level assignments for
both tasks resulting from a splitting operation can be
composed from the top-level assignments of the original
task, the assignments done up to the moment the split

∆Ti, i.j = Ti.j - Ti

id( Ti.j )

p c

p k p l

Ti.j

(a) Centralized task queue with implicit fault tol-
erance. All communication including task trans-
ferals is relayed by the coordinator.

∆Ti, i.j = Ti.j - Ti id( Ti.j )

Ti.j

p c

p k p l

(b) Decentralized task queue with task tracking-
based fault tolerance. Bulk transfers are per-
formed over P2P connections.

Fig. 6 Comparison of the data flow for a centralized and dis-
tributed task queues in case of a splitting operation for task Ti

on node pk with subsequent task transfer to and completion of
task Ti.j on another node pl (�Ti,i.j is the delta between the
tasks Ti and Ti.j , id(Ti.j) is the unique task identifier of task
Ti.j).

is performed, and the split literal (cp. Figure 2). As the
coordinator already knows the top-level assignments of
the original task, it is not necessary to include them in
the Update messages. Together these measures signif-
icantly reduce the load on the coordinator that would
otherwise become a bottleneck.

Figure 6 depicts the data flow after a splitting opera-
tion for a centralized task queue used by previous Desk-
top Grid SAT solvers [27] and for Satciety’s fault-
tolerant distributed task queue approach. In Satciety,
the bulk of data is transferred in a peer-to-peer fash-
ion eliminating the overhead and enhancing scalability
compared to taking the indirection over the central task
queue.

5.2.1 Deliberate Host Departure

Although the fault tolerance mechanism described above
ensures correctness by restoring the tasks discarded when
a node deliberately leaves the grid, the resulting inef-
ficiency is unacceptable. In Satciety, the local task
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pool is implemented as a Cohesion application that is
shutdown in a controlled way by the platform as soon
as user and/or application defined conditions no longer
hold [9]. As part of this shutdown sequence the tasks in
the local task pool are o✏oaded to neighbor nodes that
are selected at random. As SAT tasks are potentially
large (see Section 6), this process may take a very long
time and the user experience may be impaired. For that
reason the o✏oading process is aborted after a config-
urable period of time. Those tasks that could not have
been o✏oaded to other nodes are discarded and thus are
e↵ectively lost and subject to restoration by the fault
tolerance mechanism. The same is true for tasks that
are sent successfully but for which the receiving node
departs or crashes before the task has been completely
transmitted.

5.3 Termination Detection

In asynchronous distributed systems with message-based
communication the detection of termination is a non-
trivial problem as there is neither global time nor full
knowledge of the global state available. A system is con-
sidered to be globally terminated, if every participating
task is terminated and no potentially activating mes-
sages are in transit.

Today, there is a large body of research concern-
ing termination detection algorithms [37,38]. Many of
them make restrictive assumptions concerning the un-
derlying model of computation. The most general algo-
rithms consider di↵using computation models in which
one process initiates the computation and dynamically
launches subcomputations on remote nodes by sending
task transferal messages. The resulting activation graph
is a tree and is used in parental responsibility algorithms

to detect termination by continuously tracking process
lifecycles. In contrast, wave-based algorithms periodi-
cally propagate waves of control messages throughout
the network.

More recent algorithms are applicable for completely
asynchronous communication models where messages
may arrive out-of-order or may be delayed for arbitrary
but finite time [39,40,41,42]. While the most general of
these algorithms support dynamic environments, many
of them are not ready for use in real applications as
they are restricted to scenarios where processors may be
created but not destroyed [43,44,45] or require a node
to participate in termination detection after it has been
destroyed [46]. Both assumptions obviously do not hold
for highly volatile Desktop Grids.

The algorithm by Mattern [47] is applicable for com-
pletely asynchronous systems and supports both pro-
cess creation and destruction. Every task is associated
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Fig. 7 Comparison of the behavior of Mattern’s credit-based and
Satciety’s spectra termination detection algorithm in case a task
is spuriously restored by Satciety’s fault tolerance (e.g., after a
scenario as depicted in Figure 5a). While the simple scalar arith-
metic of the former is insu�cient to handle credit share dupli-
cation correctly and hence announces termination prematurely,
our algorithm tolerates such conditions as intervals additionally
encode parent/child relations among the tasks.

with a certain amount of credit. Whenever a new task is
created, half of the tasks credit is subducted and given
to the newly created node. On termination of a task the
associated credit is sent back to the initiating process.
When the accumulated credit at the initiator equals the
credit that was given to the initial task, the computa-
tion has terminated. Unfortunately, this credit-based
algorithm is not resilient to task duplication. As both
the original task as well as its duplicate carry the same
credit, the invariant of the credit algorithm

X

ti2T

C(ti) = C(t0),

is violated, where T is the set of tasks created so far,
C(ti) is the credit associated with task ti, and C(t0) is
the credit assigned to the initial task t0. This inevitably
results in premature termination. This inadequacy is a
direct consequence of using scalar values as credits (see
Figure 7a).

To remove this vulnerability, we conceived a vari-
ant of the credit algorithm that uses credit intervals
instead of scalar credits. As the credit algorithm is also
known under the alias fixed energy termination detec-



11

tion algorithm and a collection of energy levels is called
a spectrum in physics, we refer to our variant as the
spectra termination algorithm: When a new task is cre-
ated the spectrum of the original task is cut in half.
While one spectrum remains with the original task the
other is assigned to the newly created one. The ini-
tiator of the computation maintains a set of disjoint
spectra and processes incoming spectra by computing
the union of the new and the already available spec-
tra. As depicted in Figure 7b, the e↵ect of premature
termination announcement caused by task duplication
described above is prevented by using intervals.

An additional obstacle to reliable termination detec-
tion is the fact that messages may be delayed arbitrar-
ily and may even get lost. Consider the case that upon
completion of a task the Update message send in rule
P1b is delivered correctly, but the associated spectrum
gets lost in transit. As the task won’t be rescheduled by
Satciety’s fault-tolerance mechanism, the job’s termi-
nation — albeit it has been completely processed — will
never be detected. Satciety deals with this problem
by piggybacking spectra on the Update messages in-
dicating task completion. Thus, either spectra delivery
and removal from task tracking are performed together
or not at all. As the latter results in redundant task
restoration, Satciety retransmits the aforementioned
Update message until it is acknowledged by the coor-
dinator.

6 SAT Task Anatomy

The basic anatomy of a Satciety SAT task consists
of:

1. A reference to the input formula, which is a uni-
form resource locator (URL) provided by the fron-
tend as part of the provisioning process (see Section
8).

2. The potentially empty set of top-level assignments

�0 defining the solver’s initial state (see Section 2.3.1).
3. Additional arguments specified at job submission.

This includes whether to suppress task decomposi-
tion in order to force the solver to operate in sequen-
tial mode, whether to perform lemma exchange, and
a timeout to prevent the solver from running indef-
initely long for extremely hard instances.

In addition to these core elements the components
of the distributed task pool (see Section 5) can aug-
ment tasks by attachments. Examples for attachments
are unique task identifiers used for fault tolerance, the
drain address for spectrum messages sent by the spec-
tra termination detector, and the node to deliver task-
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Fig. 8 Lifecycle of a Satciety task.

or job-related signals to, like termination when a node
found a solution.

As depicted in Figure 8, a task’s lifecycle consists
of its creation by initial job submission or decomposi-
tion, possibly several migrations, execution and finally
its completion. Tasks may get lost and eventually re-
stored as described in Section 5, or aborted as a conse-
quence of user-initiated job cancellation or expiration
of the timeout specified on job submission. The tran-
sition from Running to Ready updates the top-level
assignments part of the task according to the current
state of the solver and is triggered on deliberate host
departure (see Section 5.2.1). The workflow executed
in the Running state is depicted in the lower part of
Figure 8 and basically consists of creating a solver in-
stance for the given formula, executing the solver on
the arguments as specified by the task, and sending the
result back to the gateway, i.e., the peer where the job
has been submitted. Satciety can be configured to ex-
ecute an optional verification step (region surrounded
by dashed line in Figure 8) in case a solution is found.
Although this step is functionally unnecessary, it is a
valuable tool for identifying bugs in a highly complex
distributed solver implementation like Satciety. For
this purpose the previously created solver instance is
reset and reused. In case the verification process fails,
an error signal is sent to the gateway.
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6.1 Task compression

As the solving process evolves, the top-level assign-
ments quickly become the largest part of a task. Its size
is in the order of the number of variables which can eas-
ily exceed a million for real-world instances. Simply us-
ing integer arrays to encode the top-level assignments
results in tasks sizes in the order of megabytes. This
is prohibitive in the context of Desktop Grid applica-
tions. Thus, Satciety employs a more sophisticated
two-stage strategy: First, we look at a compact binary
encoding of the top-level assignments. For the set V of
variables, we need

|Lit|2 = dlog2 |V |e+ 1

bits to binary encode a literal and hence

|�0|sparse ⇡ |Lit|2 ⇥ |�0|

bits to encode the top-level assignments by concatenat-
ing the encoded literals. We call this encoding sparse.
In contrast a dense encoding is performed by encoding
every literal between the lowest and the highest literal
of the top-level assignments using 2 bits each. This re-
sults in a size of

|�0|dense ⇡ 2⇥ (max {i : liti 2 �0}
�min {i : liti 2 �0}).

Satciety’s task encoder computes both |�0|sparse and
|�0|sparse and encodes the top-level assignments using
the encoding yielding the more compact representation.
As a second step Satciety uses GZIP compression to
further reduce the size of the task.

6.2 Memory Management

The DPLL algorithm with dynamic learning adds a new
clause to the clause database whenever a conflict occurs.
To avoid running out of memory, modern SAT solvers
use heuristics to estimate the usefulness of clauses for
the future solving process. Based on this estimation
they decide which clauses should be deleted. One popu-
lar heuristic is to periodically delete those clauses that
have not been occurred in a conflict clause for a certain
time. To guarantee termination such solvers gradually
increase periods between deletions. Hence, the solvers
memory footprint is constantly growing, eventually re-
sulting in the system running out of memory. In the
case of Satciety this behavior is prohibitive for two
reasons: First, with Satciety allocating a great deal
of the overall system memory, other user processes are

swapped by the operating system, which drastically re-
duces responsiveness in case the user reclaims the sys-
tem. Second, the Java Virtual Machine is killed when no
more memory is available, preventing the host from fur-
ther participation in the parallel solving process. To cir-
cumvent these unacceptable scenarios, Satciety em-
ploys a three-stage memory management approach that
enforces memory limits while preserving completeness.
The stages are:

1. Application Control. Satciety leverages the fine-
grained application lifecycle control of Cohesion.
Satciety is allowed to run only as long as the
amount of free physical memory is above a given
threshold MShutdown. In case free memory falls be-
low this threshold, local tasks are o↵-loaded to other
peers and the Satciety application is shutdown
freeing all memory used by the solver.

2. Stimulated Reduction. When the amount of free
physical memory drops below a thresholdMStimulate >

MShutdown Satciety instructs the solver to reduce
the clause database. This reduction is equivalent to
reductions triggered by the clause removal heuristic
described above and executed as part of the regular
solving process.

3. Forced Reduction. Removing enough clauses to
comply with memory constraints by stimulated re-
duction is not always possible, since clauses are locked
when they are participating in the current back-
tracking branch by being the reason for a variable
assignment [48]. In case free memory is below a
threshold MForced with

MStimulate > MForced > MShutdown

after a stimulated reduction has been performed,
Satciety backtracks to level 0 and triggers a stim-
ulated reduction. Backtracking rewinds the assign-
ment stack which unlocks additional clauses that
may now be safely deleted by stimulated reduction.

To guarantee termination Satciety splits o↵ a new
task after performing a stimulated or forced reduction.
As described in Section 2.3.1 splitting fixes the first
decision variable on level 1 in the original task and adds
the variable in the opposite phase to the assignment
stack of the split o↵ task. Thus, performing the split
ensures progress and eventual termination.

7 Topology-Aware Distributed Dynamic

Learning

Dynamic learning by conflict analysis has become stan-
dard for sequential SAT solvers and tremendously im-
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Fig. 10 Satciety’s adaptive lemma exchange facility (ALEF)
implements a demand-driven strategy that maintains a steady
lemma output rate by dynamically regulating the lemma output
of the solver core.

proves their performance. By exchanging lemmas be-
tween solver cores, a similar e↵ect is aimed for paral-
lel and distributed SAT solvers. Although a thorough
theoretical investigation and comprehensive experimen-
tations are still pending, the beneficial e↵ect of shar-
ing comparatively short lemmas is indisputable as they
have high potential to help in pruning the search space
while at the same time are cheap to transmit.

A distinguishing feature of Desktop Grid environ-
ments is the fact that in general a node is able to di-
rectly exchange messages with only a limited number of
other nodes. While communicating with the rest of the
system is often enabled by relaying, this limited (direct)
connectivity introduces inhomogeneous communication
costs that have to be reflected in application level com-
munication patterns to avoid ine�ciency and overload.
Such protocols are called topology-aware.

In contrast to existing Grid SAT solvers [49,50],
lemma exchange in Satciety is topology-aware. For
this purpose, the system classifies each neighbor node
— all nodes within the view of a node — as either di-

rect or indirect. Neighbor classification is performed by
leveraging a special view manager provided by Orb-

web that has been originally developed for topology-
aware broadcast algorithms [33]. The view manager de-
tects the components of the network, i.e., maximum sets
of nodes with mutual direct neighbors. As depicted in
Figure 9, lemmas are exchanged at a high rate within
and at a lower rate between components. While Sat-

ciety uses UDP for the former because of its small
overhead, lemmas exchanged between components are
transmitted in-band over XMPP connections with mes-
sages relayed by the Orbweb superpeer.

The number and average size of deduced lemmas
is heavily dependent on the concrete SAT instance.
Straightforward solutions using hard-coded size limits
thus yield unsatisfactory results. Hence, Satcietymakes
use of an adaptive approach to ensure that a predefined
exchange rate is sustained but not exceeded. This is of
particular importance in the Desktop Grid context, as
the user experience may be impaired by excessive com-
munication. Figure 10 illustrates the function of the
Adaptive Lemma Exchange Facility (ALEF) which is
instantiated twice by Satciety to implement topology-
awareness as described above. The control logic contin-
uously monitors two lemma databases each with a fixed
capacity. While the inbound lemma database (ILDB)
is filled with lemmas produced by the solver core, the
outbound lemma database (OLDB) is drained by the
lemma shipper, which marshals extracted lemmas and
sends them to the target node. Every time the OLDB
becomes empty or the ILDB becomes full, the controller
swaps the content of the databases. If both databases
are constantly filled near their capacity limit, the lemma
production rate is obviously too high. In this case the
controller instructs the solver core to produce less lem-
mas by decreasing the maximum length of lemmas that
are exported to the OLDB. Although the mechanism
could have been implemented with a single DB filled
and drained concurrently, the two database strategy
decouples solver core and shipper, which is of partic-
ular importance as conflict clause generation is part of
the main loop of solvers based on the DPLL algorithm.
The database swap mentioned does not involve copying
of the lemmas but is implemented by simply swapping
references.

8 Instance Provisioning

SAT instances encoding real world problems are often
very large, particularly in the context of formal verifica-
tion. Figure 11 shows the cumulative histogram of file
sizes of the DIMACS [51] encoded instances of the SAT
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Fig. 11 Histogram of DIMACS encoded file sizes for 877 in-
stances of the SAT Competition 2007.

Competition 2007 [52]. Most instances from the indus-
trial category are larger than 512 KB with a cluster
between 512 KB and 4 MB ranging up to over 40 MB.
Instances from last year’s SAT Race [53] were even up
to 145 MB large. Although there is in general no corre-
lation between the size of a formula and the runtime of
the solving process, in practice, one can often observe
such a relation in sequential SAT solving – at least for
problems with similar structure. Hence, reducing the
size of formulae is a promising approach to shorten
solving times and thus has become subject of active
research recently. In our case of parallel SAT solving in
a Desktop Grid scenario, limited bandwidth is another
important reason to keep instance encodings as com-
pact as possible. For the largest formula from above
(47 MB) and the grid comprised of 40 nodes used in
our performance evaluation in Section 9), a total of ap-
proximately 2 GB of data has to be transmitted only
to deliver the formula to the nodes. For these reasons
Satciety employs an extensible preprocessing pipeline
to ensure that formulae are delivered as fast as possi-
ble to the solver instances running on the participating
compute nodes. This pipeline is installed and executed
on the frontend node (see Section 3). It consists of five
stages and can be extended easily. These stages are: de-
compression, simplification, transcoding, compression
and P2P provisioning. Each stage maintains a job queue
so that the stages can be executed in parallel for dif-
ferent instances. The decompression and compression
stages are quite self-explanatory: They use the GZIP
algorithm to decompress the incoming formula and to
compress the transcoded formula respectively. The re-
maining stages are explained subsequently.

c SAT07-Contest Parameters:

c unif2p p=9 nbc2=228 nbc3=2052

c v=630 seed=702278147

p cnf 630 2280

-464 -204 0

-134 384 0

-456 446 0

...

-39 45 -225 0

295 516 337 0

Fig. 12 An example formula in DIMACS format from the ran-
dom category of the SAT Competition 2007 consisting of a pream-
ble (comments and problem line giving the number of clauses and
variables) and the clauses in CNF. Negation of a variable is de-
noted with a minus character. Clauses are terminated with 0.

8.1 Formula Simplification

Recently, advanced preprocessing techniques have been
introduced which are applied to the formula before start-
ing the actual solving process. They focus on deriving
unit clauses, implications and equivalent literals [54].
Their application on a given formula may result in a re-
duction of the number of literals, variables, and clauses,
which generally yields smaller file sizes and may also
reduce the runtime of the SAT solver. Satciety uses
SatELite by Eén and Biere [55] in the simplification
stage of the preprocessing pipeline. As a lightweight
preprocessor SatELite does not add significant over-
head to the solving process (see Section 9.3).

8.2 Transcoding to Binary CNF

DIMACS files are plain ASCII files structured as de-
picted in Figure 12. While textual data encodings do
not su↵er from byte order di↵erences and thus are in
principle well suited as a file format, their space e�-
ciency is low. For example a literal 3.456.789 produces
a 7 Byte text encoding, while a binary representation
consumes only 22 Bit or 3 Byte if byte alignment is en-
forced. Thus, Satciety transcodes DIMACS encoded
formulae to a structure preserving binary encoding we
call Bit-Packed Binary CNF (BCNF).

SAT instances are very di↵erent with respect to the
number of variables and the length of clauses: While
a hard random instance may have only a couple of
variables and rather long clauses, formulae resulting
from real-world problems often have millions of vari-
ables and very short clauses. Thus, our BCNF encoder
first looks at the number of variables (given in the
DIMACS preamble) to compute the number of bits
|Lit|BCNF necessary to encode a single literal, which
is

|Lit|BCNF = dlog2 |V |e+ 1,
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where V is the set of variables. While clauses are termi-
nated by the value 0 in DIMACS, BCNF writes a vari-
able length header in front of each clause indicating the
number of literals the clause consists of. This way mem-
ory can be allocated before reading the clause which
helps avoid unnecessary copying. The first two bits of
the header are used to indicate the length of the header
resulting in a possible maximum clause length of 28n�2

for an n-byte header. Note the fact that BCNF could
have been designed to be even denser, if structural mod-
ifications like variable or clause reordering would have
been applied. We have refrained from such optimiza-
tions for two reasons: First, downstream GZIP com-
pression would have partially leveled out potential sav-
ings. Second, reordering heavily influences the runtime
of SAT instances making performance comparisons un-
necessarily di�cult.

8.3 Peer-to-Peer Provisioning

After simplification and transcoding to BCNF the for-
mula has to be delivered to the nodes of the Desktop
Grid. As the estimation above illustrates this involves
the transmission of huge amounts of data for large real-
world instances. Even when Satciety’s preprocessing
e↵orts result in files half as large as the original, the
frontend node still would be busy for minutes, which
actually stalls the whole computation as all nodes are
served concurrently throttling each and every transfer.

Instead of employing a custom solution, Satciety lever-
ages BitTorrent [56] for distributing large formu-
lae. BitTorrent is a peer-to-peer file sharing protocol
which distributes the onus of uploading over all partici-
pants. A large body of research concerning all aspects of
the protocol has been conducted. For a thorough anal-
ysis of its performance in heterogeneous systems – like
Desktop Grids – see Liao et al. [57].

The BitTorrent distribution mechanism is imple-
mented as an additional stage of Satciety’s solving
pipeline. As demonstrated in Section 9.2.3 using Bit-

Torrent significantly reduces provisiong time for large
instances and/or large Grids.

9 Performance Evaluation

To substantiate the e↵ectiveness of our approach to par-
allel SAT solving in highly demanding Desktop Grid en-
vironments, we conducted extensive performance stud-
ies on a heterogeneous Desktop Grid. The methodology
and testbed setup is described in the following section.
The actual evaluation consists of two parts: First, we

Campus 
Network

Computer Lab
(20 Type III Nodes)

Department Hosts
(3 Type I Node)

Compute Cluster
(16 Type II Nodes)

Orbweb Superpeer
(1 Type IV Node)

Node Network Router Firewall

Fig. 13 Testbed Desktop Grid spanning 40 nodes and three net-
works

Type Hardware Software RAPI

CPU Memory OS Kernel

I AMDR�AthlonTM64 X2 3GB Linux 2.6.22-14 0.54
2 Cores @ 2.4GHz (generic)
512KB Cache / Core

II IntelR�XeonTM 2GB Linux 2.6.22.9 0.29
2 Processors @ 2.67GHz
512KB Cache / Processor

III IntelR�PentiumTMD 2GB Linux 2.6.23 0.51
2 Cores @ 3.40GHz (gentoo-r8)
2048KB Cache / Core

IV IntelR�CoreTM2 Q6600 8GB Linux 2.6.22-14 1.0
4 Cores @ 2.40GHz (server)
2048KB Cache / Core

Fig. 14 Hardware and software configuration of the nodes of our
testbed. We define the Relative Application Performance Index
(RAPI) as RAPI(p; I) := (1/ |I|)

P
i2I

TSeq(pref , i)/TSeq(p, i),
where I is a representative subset of the benchmark instances
used in Section 9.3, TSeq(p, i) is the sequential runtime of instance
i on host p and pref is the fastest host (Type IV).

use a synthetic benchmark to assess the essential prop-
erties of Satciety’s distributed task pool implemen-
tation, namely scalability and performance in the pres-
ence of volatility and faults. Second, we evaluate the
application performance based on a set of challenging
problems from a recent SAT competitive event.

9.1 Evaluation Methodology and Testbed Setup

In our case, testing on publicly available wide-area testbeds,
e.g., PlanetLab [58], is not feasible for two reasons:
First, they operate on the public Internet and hence
experience no network segmentation. Second, they are
designed to experiment with I/O bound network appli-
cations and typically run many applications in paral-
lel. Executing CPU bound applications consuming large
amounts of CPU time over extended periods of time
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Fig. 15 Probability density (pdf) and cumulative distribution
(cdf) functions for the log-normal session time distribution for
µ = 7.6 and � = 2.2 (note the logarithmic scale of the x-axis).

would inevitably disrupt these applications, violating
the usage policies of the testbeds.

Thus, we conducted our evaluation on a dedicated
testbed consisting of 40 hosts distributed over three fire-
walled Fast Ethernet Local Area Networks (100 Mbit/s
nominal bandwidth) connected by a campus network
as depicted in Figure 13. Their hardware and software
setup is summarized in Figure 14. All hosts are used
as Satciety peers and a single machine additionally is
configured to serve as an Orbweb superpeer.

Wolski et al. have shown in [59] that machine avail-
ability in Desktop Grids is best described by a log-
normal session time (TS) distribution with the prob-
ability density function

pdf (TS ;µ,�) =
1p

2⇡�TS

e

�(lnTS�µ)
2�2 ;TS > 0

with parameters µ = 7.6 and � = 2.2 (see Figure
15). We therefore configured Satciety nodes to ex-
hibit random session times according to

TS (⌫) = e
7.6+2.2⌫

s

with ⌫ being a random variate drawn from the normal
distribution with mean 0 and standard deviation 1. TS

is log-normal distributed with mean 22471s, standard
deviation 251709s and the quartiles 453s, 1998s (Me-
dian), and 8812s. These values illustrate that the distri-
bution is highly skewed towards low values. On the one
hand, this means that there is considerable volatility
despite the high mean session time. On the other hand,
the high value of the upper quartile implies that we
can find a stable node for performing the coordination
tasks, i.e., termination detection and fault tolerance,
with high probability.

Volatile nodes are simulated by having nodes join
the Satciety group, participating in the computation
for TS seconds, leaving the group and rejoining with
a new identity immediately after discarding the nodes
internal state. Node failures are modeled by dropping
tasks with a given probability PError when leaving the
Satciety group. Unfortunately, to our knowledge there
are no studies available yet that describe the reasons for
node unavailability and quantify their respective share
in total unavailability. Thus, we have to use an esti-
mated value. Following our discussion in Section 5, we
have chosen a supposedly high default error probability
of PError = 1% meaning that on average 1 out of 100
node departures is attributed to node failure resulting
in dropping the tasks currently located at the departing
node.

All Satciety peers were run on Sun JRE 1.6.0 12
Java Virtual Machines. For setups consisting of more
than 40 nodes, we configured each physical node to run
up to four instances of Satciety in parallel. The mem-
ory limits were set to MStimulate = 90%, MForced =
95%, and MShutdown = 98% of the total physical sys-
tem and/or process memory. Evaluation runs were re-
peated several times (30 times for the distributed task
pool, ten times for provisioning, and three times for
the application benchmarks). The presented confidence
intervals are based on a 95% confidence level.

9.2 Distributed Taskpool

Parallel SAT solving is heavily influenced by algorith-
mic e↵ects like work-anomalies [60]. To get a clear un-
derstanding of the performance opportunities and lim-
its of our approach, we assess the performance of the
underlying taskpool described in Section 5 using a syn-
thetic benchmark that is not subject to these e↵ects
while still reflecting the irregular nature of parallel SAT
solving: A task is defined by the number of seconds T

a processor must wait to process the task. Splitting a
task TaskA is performed by subtracting a random frac-
tion TF of the remaining wait time TR and creating a
new task TaskB for TF :

TaskA {TR}
Split! (TaskA0 {TR � TF } ,TaskB {TF }) .

9.2.1 Scalability

To assess the scalability of the task pool, we use two
standard metrics: speedup S and parallel e�ciency E.
They are defined as

S (N, p) =
TSeq⇤ (N)

TPar (N, p)
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(b) Weak scalability for TInitial = p 600s

Fig. 16 Scalability of Satciety’s distributed task pool for the synthetic benchmark application.
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(b) Node activity over normalized time for p = 160 nodes

Fig. 17 Node activity over normalized time ⌧ (t;N, p) = t
TPar(N,p) for the synthetic benchmark application in 20 and 160 node setups

for TInitial = 600s. The figures show the minimum, mean, and maximum number of active nodes at normalized time ⌧ within the
dataset collected over 30 runs. Shaded areas — defined as times where the number of active nodes is below 90% of the number of
available nodes — contribute to the parallel overhead of the computation.

and

E (N, p) =
1

p
S (N, p)

where TPar (N, p) is the parallel runtime for a given
problem size N on p processors. TSeq⇤ (N) denotes the
runtime of the best (known) sequential algorithm for
a given problem size N , which in our case is simply
the initial overall wait time TInitial. According to how
N is selected one speaks of strong (N 2 O (1)) and
weak scalability (N 2 O (p)). Figure 16a shows strong
scalability metrics for TInitial = 600s and up to 160
non-volatile nodes. While the speedup is almost opti-
mal for small node counts, it increasingly deviates from
perfect speedups for increasing node counts resulting in

a speedup of 111.0± 6.6 and a corresponding e�ciency
of roughly 69.4%± 4.1% for 160 nodes. The reason for
this behavior is the increasing parallel overhead caused
by idle nodes at the beginning and the end of the com-
putation (see Figure 17). The time required to find an
active node for work-stealing at a given point in time
is proportional to the number of active nodes at that
time. Thus, work di↵usion at the beginning of the com-
putation requires time TGrowth / log (p) until all nodes
are active. For the same reason, the end of the com-
putation is governed by exponential decay creating an
analogue dependency TDecay / log (p). Of course, the
impact of these overheads on overall e�ciency depends
on the ratio between problem size and node count.
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(b) Performance for varying failure probability PError

Fig. 18 Volatility tolerance of Satciety’s distributed task pool

As expected, weak scalability (TInitial = p 600s) of
the system is much better. As can be seen in Figure 16b,
speedups grow linearly for increasing node count re-
sulting in a slowly dropping parallel e�ciency between
97.9%± 1.8% for 20 and 96.0%± 0.6% for 160 nodes.

9.2.2 Volatility Tolerance

Tolerating deliberate and failure induced node depar-
tures is one of the most important requirements for a
Desktop Grid Computing system. Besides correctness,
these factors may also severely impair performance. To
substantiate that Satciety doesn’t su↵er from such
inadequacies, we measured speedup and e�ciency for
the synthetic benchmark application under volatility.

Figure 18a depicts the impact of varying mean ses-
sion time for a fixed error probability of 1% in a 160
node setup and a problem size of N = 160 · 600s =
96, 000s. The variation was done by using T

⇤
S = 1

f Ts

with fixed f > 0 as the actual session time. For f = 1
— resulting in the session time distribution described
in Section 9.1 — the speedup is 149.0±5.5 and the e�-
ciency is 93.1% ± 3.4%. The penalty when compared
to the non-volatile setup from above is roughly 3%.
For increasing f , speedups drop moderately. Even in
the most demanding scenario evaluated here with a 32
times shorter mean session time, we still get a consider-
able speedup of 120.6± 7.8 or an e�ciency of 75.4%±
4.9%.

Figure 18b shows the performance penalties for dif-
ferent error probabilities PError in a 160 node setup
with the real-world session time distribution (f = 1).
For PError = 1%, we see a speedup of 149.4±3.5 and an
e�ciency of 93.3% ± 2.2%. Decreasing the error prob-
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Fig. 19 Comparison of elapsed time Tmax
Delay until an instance of

given size is available on all nodes

abilities further results in nearly no further improve-
ment. Noticeably, increasing PError to as much as 50%
still yields an acceptable speedup of 129.2 ± 31.4. The
large error is due to the fact that departures are com-
paratively infrequent so that the size T of the dropped
task becomes decisive for the actual impact on e�-
ciency.

Besides the dominating overhead associated with
work repetition and restoration costs for lost tasks, a
small fraction of the di↵erence of roughly 3% in e�-
ciency between the non-volatile (96%) and the volatile
setup (93.1%/93.3%) can be attributed to the slightly
smaller e↵ective group size resulting from the small
pause when nodes leave and rejoin the Satciety group.
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9.2.3 Provisioning

As discussed in Section 8, SAT instances can be very
large. Distributing the file from a single server inevitably
becomes a limiting factor for achieving high e�ciency
when the system is scaled beyond a few dozen nodes.
To substantiate this claim, we performed a comparison
between server-based provisioning over HTTP and P2P
provisioning over BitTorrent. Our implementation is
based on the libtorrent library version 0.14.9 from
Rasterbar Software [61] attached over the Java Native

Interface (JNI).

Figure 19 shows the time until the instance is avail-
able on all nodes in a 40 node setup for varying in-
stance sizes and both protocols. For files up to a size of
4 MB the overhead of scraping and peer-to-peer con-
nection negotiation levels out the possible speedup of
multi-sourced download resulting in relative di↵erences
between ⇡ 185% for 4 KB and ⇡ 16% for 4 MB in-
stances in favor of server-based provisioning. For 16 MB
instances and beyond P2P provisioning clearly outper-
forms server-based provisioning by increasing factors up
to ⇡ 3.8 for 256 MB instances. The overall amount of
data delivered in this setup is 10 GB.

As the absolute di↵erence between the two mecha-
nisms is small for instance sizes up to 4 MB, the po-
tential of an adaptive strategy, that employs the best
mechanism for a given instance size, is limited. Further-
more, the transition point where P2P based provision-
ing first outperforms server-based provisioning would
shift towards lower instance sizes for larger networks.
Thus, Satciety always uses P2P provisioning regard-
less of instance size.

9.3 Parallel SAT Solving

Satciety provides an interface to plugin any DPLL-
based solver that provides the ability to split on demand
and that emits and is able to consume lemmas on the
fly. For our tests, we used Minisat v1.14 [48] attached
over JNI as Satciety’s solver core. Minisat attained
top rankings in SAT competitive events of the last years
[62].

Motivated by the scalability results from the pre-
vious section, the benchmark suite used to evaluate
Satciety’s SAT solving performance consists of long-
running benchmarks from all three categories of the
SAT Competition 2007. We call an instance long-running
when it has been solved by Minisat within the allowed
time (10, 000s for industrial and 5, 000s for crafted and
random instances) but took at least 1, 200s. This crite-
rion is met by 15 random, 23 crafted, and 17 industrial
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Fig. 20 Cactus Plot3 comparing the performance of the sequen-
tial Minisat and Satciety

instances. Note that we restrict our evaluation to un-
satisfiable instances. For parallel heuristic search meth-
ods like SAT solving, speedups obtained for satisfiable
instances ultimately result from the parallelization of
non-optimal sequential methods. (Note that the com-
putation is terminated when a solution is found.) In the
case of SAT it is impossible to find an optimal method
for all instances. Thus, parallel processing of satisfiable
instances is an important means for speeding up the
solving process. However, performance results obtained
for satisfiable instances are not suitable to investigate
on the e↵ectiveness of a specific parallel method.

Sequential runtimes were measured on the fastest
machine among the testbed nodes (Type IV in Ta-
ble 14). The coordinator performing fault-tolerance and
termination detection was located on the same node.
All other nodes were configured to use the real-world
session time distribution as described above and an er-
ror probability of PError = 1%. Although recent re-
search [63] indicates that using (at least rapid) restarts
may not be beneficial for unsatisfiable instances, dis-
abling them would bias the results towards unsatisfiable
instances. We thus use restarts for both the sequential
and the parallel setups.

Table 1 shows the results of our evaluation. With the
exception of four benchmarks, preprocessing through
SatELite and transcoding to BCNF resulted in sig-
nificant file size reduction of up to 81.4% and 30.3% on
average. Preprocessing times (Tpre) are – with a sin-
gle exception (uts-l06-ipc5-h33-unknown) – negligi-
ble as compared to both sequential (Tseq) and parallel

3 Cactus Plots are traditionally used in SAT competitive
events to compare SAT solver performance. It is a cumulative
plot showing how many instances (x-axis) have been solved in
time below or equal to a given runtime (y-axis).
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Fig. 21 Performance comparison of sequential Minisat and Satciety

(Tpar) solver runtimes. Thus, they do not significantly
a↵ect speedups.

As can be seen from Figure 20 and Figure 21a,
Satciety clearly outperforms the sequential solver in
all categories realizing significant average speedups of
15.1±0.5 for random, 11.3±0.4 for crafted, and 18.1±
2.5 for industrial instances (see Figure 21b). The aver-
age speedup over all categories is 14.5± 1.1. Note that
the given speedup values are based on the sequential
runtimes on the fastest machine with a RAPI value of
1.0 (cf. Table 14) while the mean RAPI value of the
nodes in our testbed is 0.44. In this light, the perfor-
mance of our parallel approach to SAT solving is even
more impressive.

The variability of speedups, both across instances
and across runs for the same instance, however is very
pronounced. This decreased robustness is caused by
work-anomalies, i.e., the total amount of work carried
out by the parallel execution is di↵erent and in some
cases considerably larger than for the sequential exe-
cution. This behavior shows that it is generally di�-
cult to keep the e↵ectiveness of the sequential heuris-
tics in the corresponding parallel version at the same
level for a wide range of di↵erent SAT instances. Work
anomalies are typical for all known approaches to paral-
lel SAT solving. They tend to become more pronounced
for larger number of processors which represents a sig-
nificant challenge for future research.

10 Related Work

In the following discussion of related work, we con-
centrate on approaches to parallel SAT solving that
are designed for distributed-memory parallel architec-

tures. For a further treatment of parallel SAT solving on
shared-memory parallel hardware, we refer the reader
to [64], [65], [66] and [67].

10.1 Parallel SAT Solving on Distributed-Memory
Architectures

One of the first parallel SAT solvers was presented by
Böhm and Speckenmeyer [68]. Their work especially in-
vestigates on e�cient load balancing techniques for a
d-dimensional mesh network-topology of a transputer.
Another early approach to parallel SAT solving is Zhang’s
PSATO [26]. PSATO is a distributed parallel SAT solver
targeted for networks of workstations. It introduced the
guiding path technique for exploratory problem decom-
position. This technique takes advantage of the decision
heuristic of sequential solvers for splitting the search
space. PSATO is based on external parallelization of
the sequential solver SATO. The parallel solver PSatz
by Jurkowiak et al. [29] is a parallel variant of the
sequential solver Satz. PSatz employs a very similar
approach to parallelization as PSATO, but uses work-
stealing techniques for load-balancing. All parallel SAT
solvers we discussed so far focus on the parallelization
of the search process but don’t establish a distributed
learning process, which is crucial for exploiting the po-
tential of modern SAT solving methods in parallel en-
vironments.

PaMiraXT and PaSAT are parallel SAT solvers that
both establish a distributed learning process, but are
based on contrary design principles:

PaMiraXT by Schubert et al. [69] is a parallel
SAT solver designed for networks of shared-memory
parallel computers. It is based on a centralized Mas-
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Instance Preprocessing Solving Runtime Speedup

LI [Byte] LF [Byte] �L [%] Tpre [s] Tseq [s] Tpar [s]

Random Category

unif2p-p0.7-v4500-c12015-S1349608788-18 78892 59607 24 0.74 15454.42 2912.38 ± 295.22 5.34 ± 0.54
unif2p-p0.8-v1665-c5178-S883553387-12 32368 25425 21 0.46 3418.74 652.04 ± 19.11 5.24 ± 0.15
unif2p-p0.8-v2035-c6328-S1022605561-16 40127 30140 25 0.50 1775.25 184.80 ± 2.74 9.58 ± 0.14
unif2p-p0.9-v630-c2280-S1071799860-07 13560 11103 18 0.35 1166.76 230.75 ± 6.90 5.05 ± 0.15
unif2p-p0.9-v810-c2932-S1275186626-09 17766 14178 20 0.37 6263.49 911.66 ± 48.60 6.88 ± 0.36
unif-k3-r4.26-v400-c1704-S1013535775-14 10007 7777 22 0.33 3127.13 391.11 ± 13.09 8.00 ± 0.27
unif-k3-r4.26-v400-c1704-S105499989-20 9982 7784 22 0.33 1914.97 191.20 ± 3.89 10.00 ± 0.20
unif-k3-r4.26-v400-c1704-S1671397883-11 10050 7800 22 0.33 2073.05 258.62 ± 7.33 8.01 ± 0.23
unif-k3-r4.26-v400-c1704-S1925680230-06 10013 7746 23 0.33 2928.86 282.92 ± 1.40 10.34 ± 0.05
unif-k5-r21.3-v90-c1917-S1380126410-13 14035 9930 29 0.37 1740.44 64.42 ± 3.17 26.91 ± 1.29
unif-k5-r21.3-v90-c1917-S1412274662-11 14042 9938 29 0.37 1585.32 64.67 ± 0.99 24.39 ± 0.37
unif-k5-r21.3-v90-c1917-S1414833579-15 13988 9925 29 0.37 1682.77 67.85 ± 3.03 24.71 ± 1.12
unif-k7-r89-v55-c4895-S1155123565-17 42501 34066 20 0.45 1923.19 67.62 ± 1.23 28.26 ± 0.51
unif-k7-r89-v55-c4895-S1215610276-02 42451 34125 20 0.44 1766.97 65.48 ± 2.13 26.83 ± 0.85
unif-k7-r89-v55-c4895-S145251364-05 42466 34120 20 0.44 1854.85 68.91 ± 2.13 26.77 ± 0.83

Crafted Category

999999000001nw.sat05-447 130996 70639 46 0.95 748.70 37.38 ± 1.83 19.59 ± 0.92
connm-ue-csp-sat-n800-d0.02-s925928766.sat05-538 48848 46435 5 0.73 1077.33 123.32 ± 7.24 8.71 ± 0.52
contest03-hwb-n26-01-S1957858365.sat05-500 4713 3088 34 0.27 464.08 44.71 ± 1.49 10.33 ± 0.35
contest03-SGI 30 50 30 20 1-dir.sat05-439 274484 312259 -14 6.88 1679.13 120.21 ± 1.37 13.27 ± 0.14
contest03-SGI 30 50 30 20 3-dir.sat05-440 279307 311213 -11 4.71 2872.18 97.03 ± 4.95 28.32 ± 1.42
contest04-lksat-n1000-m6860-k4-l4-s1935114289.sat05-523 52960 39473 25 0.46 2319.05 197.33 ± 9.12 11.74 ± 0.56
hwb-n26-03-S540351185.sat05-490 4727 3109 34 0.27 769.86 42.97 ± 2.19 17.84 ± 0.89
hwb-n28-01-S136611085.sat05-491 5127 4112 20 0.28 1309.34 109.67 ± 2.16 11.91 ± 0.23
hwb-n28-02-S818962541.sat05-492 5088 4095 20 0.28 2584.33 127.11 ± 1.23 20.29 ± 0.20
linvrinv5.sat05-564 7502 6120 18 0.32 1090.34 47.50 ± 0.72 22.81 ± 0.34
mod2c-3cage-10-2.sat05-2567 3624 2641 27 0.23 2527.79 538.19 ± 33.68 4.71 ± 0.31
mod2c-3cage-10-3.sat05-2568 3644 2620 28 0.22 2616.97 1073.21 ± 204.98 2.50 ± 0.46
phnf-size10-exclusive-luckySeven.used-as.sat04-990.sat05-4196 6558136 6468952 1 50.47 6751.40 3134.40 ± 1289.16 2.39 ± 0.97
pmg-12.sat05-3940 3370 2709 20 0.23 2282.49 80.11 ± 1.32 28.42 ± 0.47
pyhala-braun-40-4-02.sat05-459 211234 71182 66 0.89 969.55 43.90 ± 1.85 21.69 ± 0.90
QG7a-gensys-icl001.sat05-3822 228575 168157 26 1.00 6395.19 5619.02 ± 443.29 1.14 ± 0.09
QG7-dead-dnd001.sat05-3419 102470 52390 49 0.58 1304.73 1002.32 ± 58.88 1.30 ± 0.07
QG7-dead-dnd002.sat05-3108 141168 64408 54 0.72 6550.16 908.05 ± 35.96 7.22 ± 0.29
QG7-gensys-icl100.sat05-3226 162219 100981 38 0.78 2539.24 1978.89 ± 213.54 1.29 ± 0.15
QG7-gensys-ukn003.sat05-3346 135088 84653 37 0.69 4464.59 1635.71 ± 15.29 2.73 ± 0.03
s101-100 812 562 31 0.17 1784.41 161.49 ± 4.14 11.04 ± 0.28
s97-100 777 546 30 0.17 1210.75 117.36 ± 0.43 10.30 ± 0.04
unsat-set-b-fclqcolor-10-07-09.sat05-1282 19664 21806 -11 0.46 2350.76 1854.89 ± 157.90 1.27 ± 0.11

Industrial Category

AProVE07-08 68759 66808 3 0.90 1228.54 104.46 ± 10.29 11.74 ± 1.09
AProVE07-09 696516 693378 0 14.30 7522.14 2169.99 ± 127.73 3.46 ± 0.21
AProVE07-16 814813 378435 54 6.05 699.84 105.56 ± 33.29 6.68 ± 1.78
AProVE07-27 118729 100651 15 1.90 24591.93 358.88 ± 15.61 68.25 ± 2.98
cube-11-h13 6238423 5259684 16 318.06 17609.81 10396.53 ± 156.03 1.67 ± 0.02
dated-10-11-u 2806193 637494 77 14.49 10857.07 685.39 ± 218.52 16.63 ± 5.37
dated-10-13-u 3672073 871186 76 20.06 9496.21 189.41 ± 32.51 46.25 ± 7.88
dated-5-15-u 3148506 635904 80 16.04 3939.23 141.47 ± 18.50 25.36 ± 3.19
dated-5-17-u 3902323 725932 81 20.17 10072.31 221.30 ± 29.78 42.25 ± 5.53
emptyroom-4-h21 949908 748866 21 11.44 32460.37 13904.39 ± 1571.51 2.35 ± 0.25
eq.atree.braun.11 26538 20337 23 0.47 2302.96 94.93 ± 16.38 24.59 ± 3.86
manol-pipe-f9b 2495048 1069250 57 19.06 2595.25 1228.82 ± 120.50 2.11 ± 0.21
manol-pipe-f9n 2517249 1083411 57 19.36 1382.13 962.74 ± 174.24 1.46 ± 0.28
manol-pipe-g10nid 2995202 1254304 58 21.80 18389.17 718.16 ± 243.59 26.62 ± 8.04
sortnet-6-ipc5-h11 405533 174448 57 8.91 3121.68 201.56 ± 6.94 14.88 ± 0.48
total-10-13-u 4661995 1144413 75 25.70 6872.45 520.27 ± 34.48 12.67 ± 0.79
uts-l06-ipc5-h33-unknown 3496371 3625799 -4 209.05 433.79 329.46 ± 83.39 1.21 ± 0.19

Table 1 Satciety performance for long-running SAT Competition 2007 problems in a volatile Desktop Grid (LI =̂ initial instance
size, LF =̂ final instance size after preprocessing, �L = 1 � (LF /LI) =̂ instance size reduction, Tpre =̂ time spent on preprocessing,
Tseq =̂ runtime of the sequential solver, Tpar =̂ runtime of the Satciety solver). The index of dispersion is the (sample) standard
deviation.

ter/Worker model, where the master is responsible for
steering problem decomposition and load balancing. The
master also serves as a hub for collecting and dissemi-
nating lemmas among the clients. Due to the completely
centralized architecture, the scalability of this approach
is limited. The authors present performance evaluations
for a distributed environment consisting of 3 nodes with
8 cores in total.

The parallel SAT solver PaSAT by Blochinger et

al. [70] is targeted for tightly coupled distributed mem-
ory architectures, like HPC clusters. It is based on a
fully distributed task pool execution model for paral-
lelizing the search process. Additionally, PaSAT estab-
lishes a distributed parallel learning process based on
asynchronous communication: Each node dispatches a
mobile agent which visits other nodes and gathers per-

tinent lemmas. The fully distributed problem decom-
position and load balancing process enabled by the un-
derlying distributed task pool, together with the asyn-
chronous and selective dissemination of lemmas by mo-
bile agents, ensures high scalability of the approach.
The performance of PaSAT is evaluated in a distributed
environment comprised of 24 nodes.

In contrast to Satciety’s task pool, those of PaMi-
raXT and PaSAT both do not support volatile environ-
ments.

10.2 Parallel SAT Solving on Grids

ZetaSAT by Blochinger et al. [27] is a framework for
parallel SAT solving on Desktop Grids. It is built on
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top of the Client/Server based Desktop Grid platform
ZetaGrid. Due to the limitations of this class of Desktop
Grids (see Section 1), it uses a centralized task pool and
does not communicate lemmas among the nodes.

In [50] Hyvärinen et al. present a distributed SAT
solving method incorporating a limited form of dynamic
learning which is tailored for Grids comprised of batch
controlled resources, where individual jobs are not able
to communicate directly. Their approach is based on
competition parallelism where several randomized SAT
solvers independently work on the same SAT instance
until one finds a solution. For solver jobs which are ter-
minated by the Grid scheduler because they exceeded
their resource limits the lemmas deduced so far are com-
municated to the master node and stored in a central
clause database. When additional solver jobs for the
same instance are submitted some of these lemmas are
selected by a heuristic and added to the initial clause
databases.

GridSAT [71,49] by Chrabakh and Wolski is a par-
allel SAT Solver especially designed for Globus based
Grids. The basic parallel procedure employs exploratory
problem decomposition controlled by a dedicated mas-
ter node. More precisely, the master node acts as a
scheduler based on information delivered by external
resource management services. It is also responsible for
storing checkpoints. Lemmas are periodically exchanged
between nodes. Thereby the maximum size of the lem-
mas which are selected for exchange is dynamically ad-
justed in order to adapt to the available network band-
width. In GridSAT special attention is given to dynam-
ically include batch controlled resources. When batch
controlled resources become available, tasks are migrated
from interactive nodes to these resources in order to ex-
ploit the additional computational power for the time
allotted by the batch system.

While all discussed approaches are based on central-
ized control, Satciety is to the best of our knowledge
the first parallel SAT solver for Grid environments that
employs a decentralized execution model, which is – as
shown in Section 9 – able to provide good performance
and scalability even under a high degree of volatility
and heterogeneity.

11 Conclusion

In this article, we have reported on Satciety, our par-
allel SAT solver for P2P Desktop Grids. Satciety is
capable of solving problem instances used in current
SAT competitions with significant speedups compared
to state-of-the-art sequential SAT solvers. Achieving
this high performance level on P2P Desktop Grids is
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Fig. 22 Overview of the contributions made in this article. Num-
bers indicate the section where the respective feature is described.

considerably more demanding than in traditional paral-
lel and distributed environments. Satciety e↵ectively
deals with resource volatility and heterogeneity in po-
tentially large-scale Desktop Grids by means of a so-
phisticated distributed task pool implementation, var-
ious e↵orts to reduce problem and task size, scalable
data provisioning, protective solver memory manage-
ment, and adaptive topology-aware lemma exchange
(see Figure 22).

Our work provides a solid foundation at the sys-
tem level for achieving high scalability of parallel SAT
solving (as well as for other problems based on heuris-
tic search processes, e.g., discrete optimization). This
is a crucial building block for enabling further research
in parallel SAT solving which must address robustness
in the first place. This requires a deeper understand-
ing of the causes of work-anomalies which accompany
the transformation of highly optimized sequential SAT
algorithms into their parallel counterparts. The next
step in our endeavor to tap the full potential of mas-
sively parallel SAT solving will be to incorporate addi-
tional techniques orthogonal to exploratory decomposi-
tion for exploiting parallelism including shared-memory
data parallel techniques and hybrid approaches involv-
ing competition parallelism.
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