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Abstract Information aggregation is the process of summarizing information across the
nodes of a distributed system. We present a hierarchical information aggregation system
tailored for Peer-to-Peer Grids which typically exhibit a high degree of volatility and het-
erogeneity of resources. Aggregation is performed in a scalable yet efficient way by merging
data along the edges of a logical self-healing tree with each inner node providing a summary
view of the information delivered by the nodes of the corresponding subtree. We describe
different tree management methods suitable for high-efficiency and high-scalability sce-
narios that take host capability and stability diversity into account to attenuate the impact
of slow and/or unstable hosts. We propose an architecture covering all three phases of the
aggregation process: Data gathering through a highly extensible sensing framework, data
aggregation using reusable, fully isolated reduction networks, and application-sensitive data
delivery using a broad range of propagation strategies. Our solution combines the advan-
tages of approaches based on Distributed Hash Tables (DHTs) (i.e., load balancing and self-
maintenance) and hierarchical approaches (i.e., respecting administrative boundaries and
resource limitations). Our approach is integrated into our Peer-to-Peer Grid platform COHE-
SION. We substantiate its effectiveness through performance measurements and demonstrate
its applicability through a graphical monitoring solution leveraging our aggregation system.
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1 Introduction

Peer-to-Peer (P2P) Grids pool unused resources of non-dedicated workstations for tackling
computationally demanding problems. Specifically, they leverage P2P principles to enable
complex interaction patterns among participating hosts and thus efficiently support advanced
parallel programming models. However, P2P Grids differ significantly from traditional high
performance systems. Particularly, resources exhibit a high degree of volatility and hetero-
geneity: Depending on the usage-patterns of the participating hosts, considerably hetero-
geneous resources join and leave the grid in a frequent and unpredictable manner. These
characteristics pose enormous challenges to system as well as application designers.

Today, large P2P Grids, in principal, can realize supercomputer-level performance: Since
2003, there has been a stable growth in the number of registered DNS names to over half a
billion entries [1]. As many hosts are part of private networks, the actual number of com-
puters in use can be expected to be even higher. In the same time frame, the performance
of state-of-the-art CPUs has significantly increased. However, in order to be able to effec-
tively exploit this plethora of computational power, further development and adaptation of
key techniques in distributed and high performance systems become necessary.

In this work we investigate on efficient information aggregation techniques for P2P
Grids. Information aggregation is the process of summarizing information across the nodes
of a distributed system. For large-scale systems it is inevitable to perform information ag-
gregation in a hierarchical manner as exposing all information to all nodes would quickly
overwhelm even the most powerful nodes. Specifically, hierarchical approaches based on
aggregation trees can provide information with different levels of detail by progressively
summarizing information along the edges of a tree spanning all nodes.

Fundamental distributed paradigms and algorithms are based on information aggrega-
tion [2], including leader election, voting, service and resource placement, multicast tree
formation, and error recovery. Thus an information aggregation service can serve as a basic
building block for the design of sophisticated P2P Grid components. Despite of its impor-
tance, there are numerous open challenges in design and implementation of aggregation
systems that are considered worthy of future research [3]. Especially, the cost of reconfigu-
rations caused by high node volatility can become significant if the variance in performance
and stability features of nodes are not taken into account. This aspect is of particular impor-
tance when the considered networked system is a P2P Grid.

In this paper we present an information aggregation system especially tailored for P2P
Grids. Specifically, we make the following contributions:

1. We describe methods for both highly efficient aggregation tree management for small-
scale groups and scalable aggregation tree management for large-scale groups. Both
methods have only minimal requirements on the underlying system platform and can be
extended to take the capability heterogeneity into account, that is predominant in P2P
systems. We demonstrate that it is indispensable for efficient aggregation tree main-
tenance to account for node stability and describe how our capability-aware approach
fulfills this requirement.

2. We describe a flexible aggregation architecture that tightly integrates with the modular-
ization approaches of state-of-the-art distributed system architectures and allows for cus-
tomizing each phase of the aggregation process in a very flexible application-controlled
way. We integrated our information aggregation system into our modular P2P Grid plat-
form COHESION [4] and present results of a comprehensive experimental performance
evaluation.
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3. We propose to use a dedicated measurement scheduler based on resource usage quo-
tas and lottery scheduling to impose soft limits on resource consumption (CPU time,
network bandwidth, and secondary storage capacity) by the information aggregation
subsystem.

The code of COHESION as well as the code of the presented information aggregation
system can be downloaded from http://www.cohesion.de.

1.1 Paper Organization

The remainder of this paper is organized as follows: In Section 2, we first discuss alternative
approaches to information aggregation in large-scale distributed systems. Then, we give a
brief account of P2P Grid Computing and our P2P Grid platform COHESION in Section
3. In Section 4, we identify the requirements of information aggregation in general and
those that are specific to P2P Grid systems. In Section 5, we give a top-level description of
our approach to information aggregation. Section 6 describes in detail our techniques for
constructing and maintaining a virtual tree topology on the set of nodes. These methods
lie at the core of our approach, providing the structure for deploying a reduction network
which performs the actual aggregation. Section 7, 8, and 9 explain in detail the subsystems
of our aggregation system and its integration into COHESION. In Section 10, we present the
evaluation of our system by performance experiments. Section 11 discusses the design of
a graphical monitoring solution as an application of our information aggregation system.
Finally, Section 12 summarizes our contributions.

2 Related Work

Current approaches to information aggregation in loosely coupled distributed systems are ei-
ther based on flat, gossip style communication models with special termination/convergence
properties or employ a tree overlay topology to hierarchically compute aggregate values.

In [5] an aggregation method based on an epidemic protocol is discussed. In this ap-
proach, every node periodically selects a peer at random, exchanges values denoting the
system state, and performs an aggregation specific computation. Based on a basic proto-
col to compute averages, several other aggregation functions, like sum and variance, are
realized. While epidemic protocols are known to be exceptionally robust, their efficiency is
moderate only.

Tree topology based aggregation methods can be classified in static and dynamic ap-
proaches, depending on the way the tree topology is defined and maintained. Dynamic ap-
proaches either depend on an unstructured communication model or leverage structured net-
work overlay technology. Subsequently, we discuss representative examples of these classes.

Ganglia [6] is a scalable distributed monitoring system mainly targeted at federations of
clusters. It employs a listen/announce protocol based on multicast for monitoring individual
clusters. Thus, all nodes of a cluster collect and store the state of all other nodes. Mem-
bership is maintained by a multicast heartbeat protocol. Within federated clusters, Ganglia
uses a tree based protocol for information aggregation, where leaves of the tree are repre-
sentative nodes of each cluster. For handling failures, multiple nodes of a single cluster can
be specified as representatives. Aggregation at inner nodes of the tree is accomplished by
periodically polling child nodes. Configuration files are used to specify the structure of the
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aggregation tree, which typically reflects the administrative topology. As Ganglia takes a
static approach, it is not appropriate for highly dynamic P2P Grids.

Astrolabe [7] is a comprehensive approach for robust and scalable monitoring and man-
agement of distributed systems. For information aggregation it employs a tree structure
which reflects the administrative organization of the distributed system. It is based on an
unstructured gossip protocol for maintaining the tree topology and for information dissem-
ination. All aggregate values of a subtree are replicated on every node of the subtree, such
that all respective queries can be answered with local information. For specifying aggrega-
tion functions, Astrolabe uses a restricted form of mobile code based on SQL syntax.

The aggregation method of SDIMS [8] leverages the internal routing protocols of dis-
tributed hash tables to establish a tree based aggregation hierarchy. With this approach, the
union of search paths for a key from different nodes forms a tree. As keys are based on
attribute names, different attribute names are mapped to different trees, such that each node
acts as an intermediate point of aggregation for some attributes. Thus, the onus of aggre-
gation can be distributed among the participating hosts. In order to achieve administrative
isolation, so called autonomous distributed hash tables (ADHT) are employed which ensure
that search paths are always contained in the smallest possible domain and that search paths
for a key from different nodes of a domain converge at a node part of that domain. On top
of the ADHT layer, the aggregation management layer (AML) is responsible for maintain-
ing attribute tuples, performing aggregations, and storing aggregated values. For increasing
robustness in the case of topology reconfiguration, the AML layer performs replication in
time (lazy and on-demand) and additionally replication in space.

Both Astrolabe and SDIMS do not take varying host capabilities and stability into ac-
count. Thus, the efficiency of the aggregation process is limited by the speed of slow hosts
and the accuracy may be seriously impaired by unstable hosts.

Sensor networks share some of the characteristics of P2P Grids, like constrained re-
sources, limited view of the whole system, and a high degree of volatility. However, hetero-
geneity is not a major issue in sensor networks. TAG [9] is an aggregation system especially
addressing these sensor network specific issues. It supports declarative aggregation queries
inspired by aggregation operator in an SQL style query syntax. The system represents an
in-network aggregation approach and is based on routing trees. Trees are constructed in an
ad-hoc fashion leveraging the range restricted broadcast capabilities of individual sensors.

3 Peer-to-Peer Grid Computing

In this section we first give a brief account of the field P2P Grid Computing. Subsequently,
we give an overview of our P2P Grid Computing platform COHESION.

3.1 Characteristics of Peer-to-Peer Grids

P2P Grids belong to the class of Desktop Grids [10]. Traditional Desktop Grid systems are
based on a client/server operational model. As a consequence, respective applications are
most often based on trivial parallelism following the master/server or bag of tasks model.
Prominent representatives of Desktop Grid platforms are BOINC [11] for volunteer com-
puting and Entropia [12] for enterprise deployment scenarios.

The specific goal of the P2P Grid approach is to extend the applicability of Desktop Grid
Computing towards non-trivial parallelism. The P2P principles enable complex interaction
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patterns among the participating hosts such that advanced parallel programming models can
be realized. For example, parallel applications based on dynamic problem decomposition,
like discrete optimization or constraint satisfaction, can benefit from the advanced capabili-
ties of P2P Grids. Here new tasks are continuously generated at different locations and must
be dynamically balanced over the available processors. Typical examples of P2P Grid sys-
tems are Personal Power Plant (P3) [13] and JNGI [14], both implemented on top of the
JXTA P2P protocol suite.

In general, for P2P (and also Desktop) Grid Computing no hard quality of service guar-
antees are possible due to the high volatility and heterogeneity of resources. Enterprise
scale deployment scenarios can probably realize soft guarantees by enforcing administra-
tive guidelines for resource sharing (e.g., computers must join the grid after office hours).
However, on the other hand, P2P Grids can be operated by virtually all institutions and can
deliver considerable computational power at virtually no extra cost [15].

P2P Grids differ notably from other P2P based applications, like file sharing or instant
messaging: In order to achieve high parallel efficiency, economical use of resources is of
primary interest in P2P Grids. Resources are also limited due to constraints determined by
the resource owners which are typically the users of the computers. Specifically, in P2P
Grids, no user intervention can be assumed such that any kind of fault should be handled
transparently.

Traditional Grids, realizing virtual organizations and P2P Grids ultimately pursue the
same goal: aggregation of resources beyond local administrative domains. However, the
two approaches face different requirements and constraints, like target communities (lim-
ited trust vs. no trust) or nature of resources (high-end vs. end-user) [16]. System architec-
tures for building virtual organizations must specifically deal with interoperability issues,
like standardization of protocols and interfaces. In contrast, architectures for constructing
and operating P2P Grids must foremost reflect the high degree of resource volatility. Also,
only little administrative overhead is acceptable, since typically no additional personnel is
available for operating P2P Grid installations. As a consequence, lightweight, modular, and
self-organizing system architectures become mandatory, since they reduce software and run-
time complexity and can also adapt to the prevailing dynamism.

3.2 Cohesion Peer-to-Peer Grid Platform

COHESION overcomes the limitations of conventional Desktop Grid platforms by employing
P2P style communication via interchangeable network substrates. However, this transition
to P2P principles results in a plethora of design options on every layer of the system, that
can no longer be satisfactorily handled by traditional monolithic architectures. COHESION
addresses this issue by supporting extension and customization of all major system compo-
nents through a system design based on an industrial-strength microkernel technology. For
the purpose of this work, we limit our discussion to the relevant parts of the COHESION
architecture which are our microkernel approach and the components of the virtualization
layer (cf. Figure 1). An in-depth treatment of the system architecture can be found in [4,17,
18].

3.2.1 Microkernel

The microkernel of COHESION is based on the dynamic module system provided as part of
the Open Services Gateway Interface (OSGi) standard [19]. An application targeted for the
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Fig. 1 Layered architecture of COHESION

COHESION platform consists of one or more modules, which are called bundles in OSGi jar-
gon. Bundles are dynamic modules, thus they are first-class objects with a lifecycle, which
can be deployed into and undeployed from a running OSGi framework instance. Due to this
dynamism the preferred programming paradigm in COHESION is component-based pro-
gramming. Components may use services from and provide services to other components.
Services are POJOs (Plain Old Java Objects) that can represent virtually anything and are
managed by a security-aware service registry. The lifecycle of a component, i.e., instan-
tiation, binding of requested services, publishing of provided services and destruction, is
managed by the OSGi Declarative Services framework. Hence, a bundle developer is re-
lieved from the burden of driving the service logic and handling all the dynamism caused
by emerging and vanishing services. We heavily use the service model to realize the exten-
sibility and flexibility requirements (G4) identified in Section 4.

3.2.2 Virtualization

The virtualization layer establishes an abstraction between distributed resources and higher
level services (including applications). On this layer, COHESION provides services to dis-
cover and organize resources, to monitor their availability, and to coordinate their usage.

A group is the central abstraction within the overall architecture of COHESION. Groups
are used to organize the (initially unstructured) set of participating nodes into functional
communities where nodes interact to achieve a common purpose. Technically, a group is a
dynamic set of nodes defining a scope for isolated interaction (multicast communication).
COHESION groups are hierarchical and hence are a capable tool to model the structure of an
application domain. Nodes can be part of an arbitrary number of groups, but are at least a
member of the root group.

A (group) membership protocol (GMP) enables nodes to agree on a common view of
a group’s membership. However, this agreement does not necessarily imply that all nodes
actually share the same view. A GMP at least has to handle join and leave requests of nodes.
Note that the way in which a resulting change in membership is reflected by local mem-
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Fig. 2 Combined membership view resulting from masking out nodes considered as faulty by the FDS.

bership lists is protocol dependent. Existing protocols differ in many aspects including dis-
tribution and coverage of membership lists, resulting in different characteristics concerning
view convergence and scalability. COHESION provides two different GMP implementations:
one that utilizes mechanisms of the underlying substrate (JXTA discovery service or XMPP
Multi User Chats) with complete views and a substrate-agnostic fully decentralized, self-
organizing membership protocol with partial views of size O(log(n)) based on SCAMP
[20].

If a node crashes or becomes isolated by faulty networks links, the node’s membership
can not be canceled through explicit unsubscription by the GMP. Thus, COHESION uses a
dedicated failure detection service (FDS) to detect such ungraceful node departures. We use
a fully decentralized P2P periodic randomized probing protocol called SWIM [21]. Since
nodes that are wrongly reported as faulty (false positives) can have serious impact on pro-
tocols on higher layers of the system, SWIM employs indirect probing and suspicions to
reduce their rate.

Both mechanisms, membership management and failure detection, are used to compute
the set of available nodes within a group by masking out those nodes from the GMP managed
view that are considered faulty by the failure detection service (see Figure 2).

4 Requirement Analysis

As stated in the introduction, many fundamental problems in distributed computing can be
solved using information aggregation. To serve as such a generic building block for P2P
Grid Computing services, an information aggregation system must satisfy a number of re-
quirements.

General requirements for information aggregation systems designed for large-scale dis-
tributed systems [7,8] include:

(G1) Scalability. Typically, there is a large number of participating nodes and also a large
number of system attributes to keep track of. Thus, the system must be explicitly designed
to be scalable by not relying on global knowledge or central control. For example, a flat
aggregation scheme would simply collect information from all nodes on a single node, cal-
culate a summary value, and broadcast the result to all participating nodes. However, such
an approach turns out to be of limited scalability and robustness. In contrast, a hierarchical
aggregation scheme distributes the onus of aggregation over all participating nodes. Rather
than exposing all information to all nodes, hierarchical aggregation allows a node to access
detailed view of nearby information and summary views of global information. Particularly,
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systems that aggregate information through reduction trees allow nodes to access informa-
tion they care about while maintaining scalability.
(G2) Efficiency. The system should use the aggregation infrastructure effectively. Since the
same attributes may be monitored by multiple parties simultaneously, it is indispensable that
the whole infrastructure (i.e., sensors, aggregation trees, and delivery channels) is shared.
Additionally, to avoid unnecessary waste of resources, one needs to prevent duplication of
measurements.
(G3) Robustness. Faults are frequent in large-scale distributed systems, thus the aggregation
system must be robust and should tolerate node failures and link failures. It should also adapt
to the resulting changes in network composition and topology.
(G4) Flexibility/Extensibility. Since application requirements are diverse, the system should
support a broad range of both, sensors providing system state, as well as aggregation and
result propagation strategies. The latter includes application-level control over how and
when sensor data should be gathered, transmitted, aggregated, and distributed. Policy control
should be implemented in a way that tightly integrates with the modular approach of state-
of-the-art distributed system architectures [4,22]. Where the available functionality is not
sufficient or inappropriate, the system must allow for extension and customization through
the deployment of additional sensors or result propagation strategies.
(G5) Hierarchical Addressing. As explained in (G1) an aggregation system must be hierar-
chical to scale. This implies that the system exposes various levels of aggregation. Hence, a
flexible, location-independent addressing scheme that reflects the hierarchical organization
of the aggregation system is needed.

In addition to these general requirements of information aggregation there is a number
of unique challenges when the target system is a P2P Grid.

(S1) Volatility. Resources in P2P Grids are not available permanently [4,23,10,24]. The
volatility of a system is the fluctuation of the overall resource availability within the system.
In P2P Grids volatility is much more pronounced than in other kinds of parallel or distrib-
uted systems like compute clusters. This can be attributed to reduced system isolation and
typically lesser reliability of host components (like lacking redundancy), resulting in a mul-
tiplication of possible error sources. Furthermore, non-dedication, i.e., the nodes of a P2P
Grid are primarily used for other purposes, considerably contributes to the observed increase
in volatility. The resulting requirement is closely related to robustness (G3). However, the
impact of regular fluctuation in resource availability is typically much more pronounced
than that resulting from failure. Hence, the system must not only handle occasional error
conditions but must be tailored to cope with constant flux.
(S2) Resource Limitations. Many nodes in a P2P Grid are of limited capability since re-
sources like CPU time, network bandwidth, and secondary storage capacity are constrained
by the owner of the resources. Thus, the share of these resources consumed by the aggre-
gation system must be bounded to avoid interference with the actual main purpose of the
system.
(S3) Capability Heterogeneity. The nodes of a P2P Grid are most typically heterogeneous
in terms of capability. Hence, the strategy of distributing the aggregation onus uniformly
across participating nodes (commonly used in networks of nodes that are on par concerning
capability) is not applicable.
(S4) Administrative Segmentation. In contrast to cluster and supercomputer environments,
P2P Grids typically span several administrative domains. This has two immediate conse-
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Fig. 3 Phases and Components of the information aggregation process.

quences: First, these domains are typically isolated by firewalls and address translating de-
vices (NAT). Such network segmentations must be bridged by the system. However, inter-
segment traffic should be limited to avoid bottlenecks. Second, confidential sensor data must
be protected from unauthorized access. Thus, the system should be able to process queries
concerning information about nodes that are part of a specific administrative domain com-
pletely within that domain. Additionally, the system must exhibit fine-grained control over
which attributes are exposed to others.

Note that these requirements affect either overall system architecture (G2, G4, S2, and
S4), tree management methods (G1, G3, G5, and S3), or both (S1). We discuss how our
solution accounts for them in Section 5 and Section 6 respectively.

5 Information Aggregation Architecture

In this section we give a brief overview of the general architecture of our information ag-
gregation system. Detailed discussions on each aspect of the system can be found in the
subsequent sections.
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The process of information aggregation can be decomposed into three phases (see Figure
3): data gathering, data aggregation, and distribution of the aggregated data.

Data gathering within our solution is addressed by providing a highly extensible sens-
ing framework (see Section 7). The central abstraction is a sensor bus that leverages the
microkernel design of COHESION to allow modules to create and deploy custom sensors to
capture system state (see Figure 3a). The sensor bus actively schedules measurements using
a dedicated measurement scheduler, thus enforcing resource limitations configured by the
host owner (S2) and preventing duplication of measurements (G2).

Aggregation is done in an efficient and scalable way along the edges of a self-healing
logical aggregation tree (see Figure 3b and Section 9 for a detailed description). The ag-
gregation tree spans all hosts within a logical partition of the whole host set. These logical
partitions are called aggregation groups and are realized as COHESION groups, which fos-
ters isolation and ensures connectivity. The aggregation tree consists of reducers collecting
values from its children and providing aggregated values to their parent. To use the aggre-
gation infrastructure most efficiently (G2), we maintain a single shared reducer network
per sensor that is used to satisfy an arbitrary number of parallel aggregation requests and
typically a single aggregation tree per application that is shared among all reducer networks.

Tree management is designed to be highly customizable. Various providers for per-
forming tree management operations can be plugged-in to realize different tree manage-
ment strategies. We use this feature to realize different strategies for prototypical use cases:
highly-performant and highly-scalable groups. Furthermore, we incorporate mechanisms to
reduce the impact of volatility by considering specific capabilities of hosts (performance,
stability, or quality of network connection) when assigning a position within the reduction
network. Thus, our solution is able to cope with both the diversity in requirements and the
enormous dynamism (S1, G3) and heterogeneity (S3) prevalent in P2P grids.

Finally, delivery of sensor/reducer data within the reduction network is accomplished
by allowing to probe remote sensors across network segmentations in a fully transparent
secure fashion (S4). This is achieved by leveraging the overlay network provided by the
COHESION platform (see Section 7). Delivery of aggregate values (see Figure 3c) can be
accomplished in an application sensitive way using a broad spectrum of strategies, including
propagation along the aggregation tree or by using a groupcast protocol provided by the
platform. Because of this flexibility, we can support a wide variety of applications with
diverse requirements (G4).

6 Methods

Naively, information aggregation could be done by having a particular host fetch values
from all other hosts in the system (see Figure 4a). However, such a centralized approach
would violate the scalability requirement (G1), since a single host would have to handle
a vast number of messages. Hence, aggregation is performed by merging data along the
edges of a spanning tree which covers all the hosts in the system (see Figure 4b). While this
approach distributes the onus of aggregation over a larger number of hosts, the indefiniteness
of spanning tree construction makes consistent addressing (G5), i.e., specifying the set of
hosts the aggregate value should be computed from, a challenging task. To circumvent this
limitation, we impose a logical overlay on the set of hosts instead of using the spanning tree
directly [8]. The overlay topology is a tree, where each host in the system is a leaf node
(see Figure 4c). Upper levels of the tree are populated by having selected hosts simulate
additional nodes. As these nodes have no direct physical counterpart, we call them virtual
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Fig. 4 Topologies used by different aggregation methods. While the centralized approach (a) does not scale
and plain tree-based (b) methods do not allow for consistent addressing, adopting a logical tree overlay based
on V-Nodes (c) ensures that both requirements are satisfied.

Method Requirements Features
View Coverage Scalability Efficiency Capability Support

ID Order Complete Low High Static⇤
Competition Partial High Low Dynamic

Table 1 Feature/Requirement comparison for the implemented schemes (⇤ see Discussion in Section 6.1.1).

nodes or more shortly V-Nodes. Leaf nodes provide initial input to the aggregation tree. Each
V-Node u performs aggregation locally by applying an aggregation function

f (u) := f ({v 2 children(u)})

to the values provided by its child nodes. A level-l aggregate, where l 2 {0,lmax} is
the value resulting from performing the aggregation process up to level l . While a level-0
aggregate is the raw input value provided by one of the hosts, a level-lmax aggregate summa-
rizes information from all hosts in the system. In Figure 4c there are four level-1 aggregates
(10,3,8,12), two level-2 aggregates (13,20) and one level-3 aggregate (33). Since aggregates
on the same level are characterized by the same level of detail, the tree overlay allows for
consistent addressing: An aggregation point is given by a pair (host,l ) and is resolved by
following l parent links starting from the given host. While (4,2) and (2,2) reference the
same aggregation point, (7,2) references another aggregation point that exposes the same
level of summarization, i.e., both aggregation points summarize information from four hosts.

An appropriate selection of hosts to simulate V-Nodes is critical for the overall perfor-
mance of the aggregation system for two reasons: First, processing incoming values from
lower levels, evaluating the aggregation function, and communicating aggregated values to
higher levels consumes resources. Placing more than a single V-Node on a host may ex-
ceed resource-constraints. Second, the cost of reconfiguration caused by a vanishing host
increases with the number of hosted V-Nodes. Hence, it is preferable to have the most stable
hosts simulate V-Nodes on the highest levels. Therefore, our approach is to prefer hosts that
are more capable in terms of both performance and stability. We call this feature of a tree
management method capability awareness.

In the following sections, we describe two different tree management methods with
different requirements and features (see Table 1) and describe how capability awareness can
be incorporated.
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Fig. 5 V-Node allocation and link associations for an aggregation group with seven hosts in the ID-based
topology management scheme.

6.1 ID-based Method

As discussed in Section 3, COHESION is a representative of a new class of P2P Grid Com-
puting platforms supporting applications beyond trivial parallelism. As these applications
typically require inter-processor communication, they are unlikely to scale to hundreds of
thousands of processors. Instead, the main focus shifts to maximizing efficiency. As effi-
ciency heavily depends on an up-to-date view of the available compute resources contributed
by participating hosts, it is indispensable to quickly and accurately detect host arrivals and
departures. Consequently, COHESION employs a group model with complete membership
lists where each group member knows all other group members. The idea of the ID-based
tree management method is to use already available information on group membership to
construct and maintain a binary aggregation tree.

The levels of the aggregation tree are populated by selecting hosts according to a total
order R imposed on the set of hosts within the aggregation group. Obviously, the whole
structure of the binary aggregation tree can be derived from evaluating R for a given set of
hosts that are member of the aggregation group (cf. Figure 5). Let posR(u) be the position
of host u in the aggregation group G with respect to R. Then host u is simulating V-Nodes
up to level l , if

posR(u) 2 Rl :=

8
><

>:

i l
|G|

2l+1

m
,
l

|G|
2l

m i
⇢ N f or l 2 [0,dlog2 (|G|)e[

{1} f or l = dlog2 (|G|)e
(1)

Additionally, a level-l V-Node ũl located at host u is connected to the collocated V-
Node ũl�1 and to the V-Node ṽl�1 located at host v with

posR(v) = posR(u)+
⇠
|G|
2l

⇡
, (2)

if it exists.
The topology management algorithm executed by each host is as follows: After becom-

ing a member of the aggregation group, the host u is provided with a dynamic view of
the hosts within the group, including itself. As full knowledge about the group members
is necessary to compute posR(u), we must employ a group model with complete views (cf.
Section 3.2). Whenever this view is updated due to the arrival or departure of a host, posR(u)
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Fig. 6 Capabilities (join timestamp and relative performance) used to evaluate the joint capability function
c j encoded in a COHESION host identifier.

is recalculated. Comparison with the former value posR⇤(u) produced on the last update re-
sults in creation (posR(u) > posR⇤(u)) or destruction (posR(u) < posR⇤(u)) of local V-Nodes
on the respective layers. Subsequently, links are created according to the rule given above.
Note, that this scheme is highly efficient (G2) as no communication other than that for group
membership management is required. However, scalability (G1) is limited by the necessity
for a group model with complete membership lists. Hence, aggregation using ID-based tree
management is perfectly suited for applications, where efficiency is of prime interest (e.g.,
as part of a distributed computation).

Although the method described here can be generalized easily to k-ary trees, we restrict
our treatment to binary trees for simplicity. Note, that the aggregation function is evaluated
|G|�1
k�1 times with k arguments for k-ary trees in an aggregation group G with |G| members.

Thus, increasing k trades evaluation complexity against invocation count. If we choose the
host of a V-Node to be one of the hosts in the subtree rooted at the respective V-Node, there
is a path from the V-Node to the hosting leaf V-Node which consists exclusively of intra-host
links. Thus, with the assumption that intra-host communication is cheap, there is no reason
to expect significant overhead for trees with small degrees.

6.1.1 Capability Awareness

In the case of capability agnostic topology management, the order R is defined by the lexical
order of the unique host identifiers that are provided by the COHESION group membership
subsystem. Making this management scheme capability aware is as simple as replacing the
random order with one that reflects the capability of hosts. Therefore, we define R as the
ascending value order of the joint capability values c j (u) of the hosts u 2 G. We use the
simple joint capability function

c j (u) = p(u)a(u) (3)

where p(u) is the relative performance and a(u) is the availability ratio of host u.
The relative performance is computed using the comprehensive CPU2006 benchmark re-
sult database published by the Standard Performance Evaluation Corporation (SPEC) [25]
as the quotient of the benchmark result of the host spec cpu(u) compared to the benchmark
result of a reference machine spec cpure f

p(u) =
spec cpu(u)
spec cpure f

. (4)
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The availability ratio a(u) is estimated using the join timestamps of the hosts Tjoin =�
t join (u) | u 2 G

 
, where t join (u) is the join timestamp of host u, as

a(u) µ
min Tjoin

t join (u)
. (5)

A major requirement of the management scheme is that the joint capability value of
each host is made available on every other host. This can be done in a static way by re-
serving a portion of the host identifier, which is otherwise initialized with random data, for
capability descriptions (see Figure 6). The major advantage of this technique is its superior
performance: there is no need for communication, except for the host identifier itself, which
is communicated anyway by the group membership protocol. However, the fact that capa-
bilities are hard coded may force a host to leave and rejoin the group, when a capability
value must be updated. Note however, that such additional updates never happen for our
joint capability function for two reasons: First, the relative performance won’t change with-
out substantial modifications to the hard- and/or software setup of the host, which would
probably require a reboot of the machine forcing a rejoin operation. Second, the availability
ratio of a host u can change only if either u rejoins or the host v with t join (v) = min Tjoin
leaves. In either case a can be computed for all hosts without any additional membership
updates.

Alternatively, a simple Query/Response-protocol can be used for more dynamic capa-
bility functions to explicitly fetch information about the capabilities of a remote host before
actually adding the host identifier to the local view. With O

⇣
|G|2

⌘
point-to-point message

exchanges for a group G of size |G|, this approach suffers from comparatively high commu-
nication complexity. Yet, the resulting adaptability can become essential when host capabil-
ities are highly dynamic.

6.2 Competition-based Method

P2P Grids are typically large-scale networks comprised of several hundreds, sometimes even
of thousands of nodes. Scalable membership management in such networks is challenging
and thus has been extensively researched during the last years. A fundamental finding is that
maintaining full membership knowledge for a large number of volatile nodes is not feasible,
as even powerful nodes are quickly overwhelmed by permanently fluctuating membership
lists. Hence, state-of-the-art membership protocols for large scale networks establish partial
local views referencing only a small number of contacts. For topology management within
large groups this has immediate consequences: First, schemes based on global knowledge,
like the ID-based management scheme described above, are not applicable. Instead, we have
to decide which nodes populate upper layers of the aggregation tree based on incomplete
information gathered from local or nearby information sources. The second consequence of
partial views is that, even if we can allocate higher-level V-Nodes appropriately, V-Nodes do
not necessarily know suitable link partners, as they may not be in their (partial) membership
list.

To cope with these difficulties our second tree management scheme makes use of aux-
iliary information sources: First, hosts providing V-Nodes on a certain layer l join a layer
group Gl . Note, that the only requirement on the group model for layer groups is that at least
a single other host is reported, if one exists. (However, for performance reasons lightweight
group models should be preferred.) By examining the membership list of their layer group,
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Fig. 7 State machine controlling the lifecycle of V-Nodes (UML Notation). The state icons visualize the
connectivity of the owning V-Node: While the upper circle represents the parent link, the two lower ones
stand for the child links. Connected links are displayed as discs, vacant links are circles. States II.b and III.b
have another state component that is drawn adjacent to the local V-Node and stands for a known group layer
neighbor. For example, a V-Node in State II.b has one assigned and one vacant child link, a vacant parent
link, and a group layer neighbor is known. V-Nodes in State VI are fully connected, thus both child and the
parent links are assigned for V-Nodes on the upper layers and the parent link is assigned for layer-0 V-Nodes.

one can easily detect whether there are other V-Nodes on the same layer. Second, hosts
maintain a cache of vacant links. This cache is used to discover potential link partners and
is kept up-to-date by an epidemic diffusion protocol. In the following sections, we describe
in detail, how these information sources are used to build and maintain the aggregation tree.

6.2.1 V-Node Lifecycle Control

Figure 7 depicts the state machine controlling the lifecycle of a level-l V-Node. Initially all
links of a newly created V-Node are vacant (III.{a,b} for leaf, I for non-leaf V-Nodes). The
V-Node controller passes into a new state in the following cases: a link becomes assigned
([C/P]LC trigger), a link gets vacant ([C/P]LD trigger), or the layer group view is updated
(|G| [> / =]1 trigger), which means that a V-Node on the same layer has been created or
destroyed remotely. States II.b and III.b are special in that the host is promoted, i.e., a local
level-(l +1) V-Node is created, after a V-Node has been within one of these states for a
predefined time TPromotion. Promotion happens only, if there is not already a local level-
(l +1) V-Node.

As hosts promote independently, there is a risk that too many level-(l +1) V-Nodes are
created simultaneously. Thus, we introduce a heuristics that links the promotion probability
P{u promotes} for a level-l V-Node u to the number of already existing level-l V-Nodes
such that



16

P{u promotes} µ |G0|
|Gl |2l+1 (6)

holds for all l � 0. As this probability decreases with the number of existing level-l V-
Nodes, an oversupply on one layer is less likely transfered to the next higher layer. Note that
the actual size of a layer group Gl is not available for group models with partial membership
lists. However, many group models, including SCAMP (see Section 3.2.2), allow for an
estimation |Gl |E of the actual group size that can be used to evaluate Equation 6.

V-Nodes with limited connectivity are removed after a specific period of time: When
both child links of a parented V-Node are vacant (IV) or the V-Node is orphaned and has at
least one vacant child link (I,II.a) for a time span TDestruction, the V-Node is destroyed. As
there are less potential link partners for nodes on higher layers, we increase TDestruction with
the V-Node layer

TDestruction (u) µ 1+ k logl (7)

where k is a constant scale factor. Thus, higher level V-Nodes have more time to discover
link partners as described in the following section.

While timeout-based promotion provides for on-demand creation of V-Nodes, destruc-
tion in case of continued lack of demand ensures that only those V-Nodes endure that are
required to maintain the topology. Both mechanisms together result in V-Nodes on higher
levels competing for V-Nodes on lower levels in a market-oriented manner. We thus refer
to this scheme as competition-based. Note, that the increased scalability of this approach
comes at the price, that its efficiency is lower than that of the ID-based tree management
scheme.

6.2.2 Link Establishment

A V-Node tries to connect to V-Nodes on the next higher layer permanently, even if the
parent link has been already assigned. If a V-Node with a lexicographically smaller identi-
fier is found, the link is retargeted to that one. Hence, excess V-Nodes eventually become
obsolete and can be destroyed. Potential link partners are fetched from a local cache contain-
ing descriptions of vacant remote child links. Cache maintenance is done by disseminating
unconnected link information within the aggregation group using a gossip-style protocol.
Due to their probabilistic nature, gossip protocols can remain very simple while still pro-
viding fast convergence, outstanding scalability, and high robustness. For this reason, they
have gained popularity in various contexts, including database maintenance [26], probabilis-
tically reliable multicast [27], and aggregation [7]. Every TRound time units, each host pushes
descriptors of unassigned local child links and a fraction of cache entries for remote links
to another randomly selected host. The receiver merges the arriving entries into the cache
by first filling up empty slots and then replacing existing entries. To keep cache information
up-to-date, victim entries, which are entries that are replaced when there are no more empty
cache slots, are selected based on an age attribute. A descriptor starts with an age value
initialized to zero when it is inserted by the hosting V-Node. For non-local descriptors, the
age counter is increased by one in each round. The increasing probability of being selected
as a victim entry, ensures that stale or outdated information is eventually displaced by more
current information and vanishes from the caches. Figure 8 illustrates an exemplary link
establishment sequence.
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Fig. 8 Link establishment sequence with open child link caches. V-Nodes are identified by aggregation
points, i.e., (host, layer) pairs (cf. Section 6).
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Fig. 9 Augmented state machine for controlling the lifecycle of V-Nodes in our capability aware competition-
based tree management scheme: Having V-Nodes in state V and V I create a level-(l +1) V-Node when they
are more capable than their current parent V-Node ensures that the system can escape from suboptimal steady
states.

6.2.3 Capability Awareness

Capability awareness is incorporated into the competition-based management scheme by
using the same joint capability function as in Section 6.1.1. Furthermore, we introduce two
additional behavioral patterns: First, V-Nodes no longer look for link partners with lexi-
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Fig. 10 Transition of a suboptimal 4-node (c j (4) > c j (2) > c j (3) > c j (1)) steady state configuration to the
optimal configuration enabled through displacement of less capable V-Nodes and links to them.

cographically smaller identifiers, when their parent link is assigned, but for those that are
more capable. Consequently, V-Nodes with higher capability values are more attractive to V-
Nodes on the next lower level. To support this behavior, we attach the joint capability value
of the hosting node to the link descriptors disseminated for link establishment. A receiving
node can then quickly check whether another candidate is more capable than the one it is
currently connected to by simple floating point number comparison.

Second, the state machine depicted in Figure 7 is augmented with a new transition for
State V and VI (see Figure 9), that creates a level-(l +1) V-Node when the joint capability
value of the local V-Node is greater than that of the newly assigned parent link partner. This
modification is necessary to set off suboptimal steady states such as depicted in Figure 10a:
Since host 4 is more capable than host 2, the state machine of the level-1 V-Node on host 4
– which is in state V I – creates a level-2 V-Node as soon as the respective timer fires (see
Figure 10b). As links are migrated to more capable parents due to our first modification
(see Figure 10c) and childless V-Nodes are eventually destroyed, the optimal steady state is
finally reached (see Figure 10d). By delaying the actual creation of the V-Node for a certain
time, we ensure that it is created only, if no other V-Nodes with equal or higher capability
values become available that have not yet been discovered. Together these patterns ensure
that V-Nodes hosted on more capable hosts eventually displace those from less capable
hosts.

Note, that this scheme supports dynamic capabilities, as capability updates once seeded
by a host eventually displace outdated values spread throughout the distributed caches.

7 Sensing Subsystem

We expose a large body of system information out-of-the-box. This includes various OS
metrics (see Table 2) collected by third party system information gathering and reporting
solutions [28] as well as data obtained from instrumented COHESION components (e.g., the
number of open tasks in a distributed task pool [4]). By leveraging the modular design of
the COHESION platform, our system supports application-specific extensions. With such an
extension mechanism the number of subsystems to monitor and manage can quickly become
overwhelming. Hence, our information aggregation solution includes a sophisticated sensor
management system described subsequently.

The architecture of the sensor management facility is comprised of three main abstrac-
tions that can be used to create sensor/actuator networks of arbitrary complexity: wireables,
wires, and a sensor pod (see Figure 11). Wireables are the basic building blocks for sen-
sor/actuator networks. They are either sensors providing monitoring data or actuators trans-
lating incoming monitoring data into some kind of action within a target subsystem. For
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Domain Path Description

CPU /system/cpu/info/model CPU model description
/system/cpu/info/number Number of CPUs
/system/cpu/info/cache CPU cache size in bytes
/system/cpu/info/vendor CPU vendor description
/system/cpu/info/speed CPU speed in MHz
/system/cpu/time/load fifteen System load average for last fifteen minutes
/system/cpu/time/load five System load average for last five minutes
/system/cpu/time/load one System load average for last minute
/system/cpu/time/wait CPU wait time in percent
/system/cpu/time/nice CPU nice time in percent
/system/cpu/time/user CPU user time in percent
/system/cpu/time/system CPU system time in percent
/system/cpu/time/idle CPU idle time in percent

Memory Subsystem /system/mem/free Free system memory in bytes
/system/mem/total Total system memory in bytes
/system/mem/used Used system memory in bytes
/system/mem/ram RAM size in MBytes
/system/swap/used Used swap memory in bytes
/system/swap/free Free swap memory in bytes
/system/swap/total Total swap memory in bytes

I/O Subsystem /system/disk/stat/total Total disk memory in bytes
/system/disk/stat/free Sum of free disk memory in bytes
/system/net/info/hostname Fully qualified hostname
/system/net/info/ip IP address
/system/net/stat/bytes in Outgoing bytes per second
/system/net/stat/bytes out Incoming bytes per second
/system/net/stat/packets in Incoming packets per second
/system/net/stat/packets out Outgoing packets per second

Process Management /system/proc/running Number of running processes
/system/proc/sleeping Number of sleeping processes
/system/proc/stopped Number of stopped processes
/system/proc/zombie Number of zombie processes
/system/proc/total Total number of processes

Miscellaneous /system/os/name Name of operating system
/system/os/version Version of operating system
/system/os/uptime Machine uptime
/system/os/machine Machine platform information

Table 2 Our aggregation system provides a comprehensive set of metrics gathered from the operating system.

example, a decrease in available network bandwidth may trigger an actuator to throttle the
frequency of work-stealing attempts initiated by the COHESION distributed task pool. Wire-
ables are first class objects uniquely identified by (path,attributes) pairs. As in many other
management and monitoring solutions [29,30], the path part of the identifier is used to orga-
nize the potentially large number of sensors in a tree-structured directory browsable through
the sensor pod. The attributes part is a set of key/value-pairs that is used to further specify
the purpose of the sensor. A CPU usage sensor, for instance, is available twice in a dual-core
or dual-processor system. While both share the same path, e.g., /system/cpu/usage, they
can be differentiated by their attributes cpu.id=1 and cpu.id=2 respectively.

Sensors and actuators are connected through wires, which are used to deliver values mea-
sured by the sensor. Delivery may be initiated proactively by the sensor (push) or on-demand
by the actuator (pull). Actuators can attach arbitrary attributes (which are key/value-pairs)
to a wire during the establishment process. Since these attributes can subsequently be read
by the sensor, this mechanism can be used to pass arguments and hence allows for sen-
sor configuration on a per-wire basis. Note, that this feature is key to prevent measurement
duplication (see Section 7.1) and to support sharing of the aggregation infrastructure (see



20

#05
,OAD

3CREEN
3AVER

-OUSE
-OVEMENT

&REE
-EM

PERIOD�����S
DERIVATION����S

�����
�����

�3ENSOR� �!CTUATOR�

�7IRE�

SENSOR��NETWORK�BANDWIDTH ACTUATOR���TASKPOOL�WORKSTEALING

3ENSOR�0OD

Fig. 11 Components of the sensing framework: Sensors gather information from hard- and software compo-
nents that is pushed to actuators over logical wires. Wires are created and managed by a sensor pod compo-
nent.

Section 9). The coordination of the wire establishment process is delegated to wire facto-
ries. Custom wire factories may be contributed by bundles and can be used to extend the
framework to support unforeseen use cases (G4).

Since COHESION is a dynamic modular system, the lifecycle of a wireable is intimately
connected with the lifecycle of its hosting bundle such that wireables are inherently transient.
Thus, hardcoded dependencies are inappropriate when creating possibly large sensor/actu-
ator networks. Instead, nodes must be able to dynamically create, register, lookup, wire up,
and finally destroy wireables. However, coping with the resulting dynamism on the applica-
tion level is complex and error-prone. Thus, COHESION provides a Sensor Pod to simplify,
coordinate, and automate these management tasks.

Since there may be a large number of wireables, eager wireable instantiation on plat-
form startup would result in an increased startup time and memory footprint violating our
requirement to support resource constrained hosts (S2). Thus, wireable instantiation happens
on demand: the sensor pod delays creation and activation of wireables until they are actually
used, i.e., a wire is going to be attached. On-demand instantiation is especially useful when
a bundle exposes a large number of sensors that are used only occasionally or when sen-
sor instantiation and operation are expensive, e.g., when external information systems like
the Network Weather Service (NWS) [31] are integrated. To further simplify sensor/actua-
tor network deployment, auto wiring automatically connects sensor/actuator pairs satisfying
user-definable conditions. It can be used to implement sensor/actuator networks in a declar-
ative way.

Wireables are implemented as OSGi components registering a Sensor or an Actuator

service with the OSGi service registry. Thus, applications can easily deploy any number of
custom wireables to extend the set of information sources available for aggregation (G4). To
allow bundle authors to decide what information is exposed to whom (S4), we leverage the
ability of the OSGI service registry to restrict access to registered services. Thus, the sensor
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Fig. 12 Prevention of measurement duplication for a sensor with three attached wires. While solid green
arrows indicate actual measurements, dotted red arrows represent requested measurements that are serviced
by reusing the last value measured. In this example, 50% of the requested measurements can be saved.

pod provides a filtered view on the OSGi service registry, called the Sensor Bus. The sensor
bus serves as a directory for wireables that can be used by applications to lookup wireables
they are interested in.

7.1 Wire Flow Control

Sensor/actuator interaction is stipulated by providing values for measurement rate and devi-
ation tolerance on wire creation. Together they define a time window that is used to detect
whether a previously generated sensor value is current enough, i.e., it’s timestamp lies within
that window (see Figure 12). This simple mechanism prevents duplication of measurements,
when more than one actuator is attached to a sensor.

In many situations an actuator is not interested in all values produced by a sensor. For
example, a low memory detector is only interested in measurements when the amount of free
memory drops below a given threshold. Since wire partners are not necessarily collocated,
a mechanism is needed that enables actuators to implement delivery conditions within or
collocated to the target sensor. Such conditions are called filters in our architecture. When
a filter applies, the updated value is not forwarded to the actuator. Filters are evaluated
whenever the sensor proactively tries to push a value over the wire. Measurements initiated
by a pull operation are delivered irrespective of installed filters. By intercepting a sensor
value as early as possible, we can avoid unnecessary transmission of sensor values and
evaluations of actuator logic. This advantage is particularly pronounced when sensor and
actuator are not collocated (see Section 7.2).

Filters are plain Java objects implementing the Filter interface, which requires a single
method void accept(T value) to be implemented. Support for declarative filter definition
is available through filter implementations where conditions are expressed through LDAP
or script language expressions. Thus, filter behavior can be adjusted without recompilation
of the hosting bundle.

Besides filter by value, a second use case of filters is to suppress delivery of measure-
ments where the value has changed in a way that is not significant or where the value has not
changed at all. The low memory detector, for instance, is not interested in minimal changes
of free memory when the new value differs only by a couple of bytes. Such use cases are
prime examples for our system’s ability to filter by change. The respective wire filter accepts
only values that differ from the last value by an absolute amount (e.g., the amount of free
memory has changed by 1 MB) or a relative amount (e.g., the amount of free memory has
changed by 10%).
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Fig. 13 Remote wires are realized by deploying transparent wire stubs that establish a connection within the
virtual overlay network using COHESION’s Generic Connection Establishment (GCE) facility.

Wire flow control ensures host system resources are used most efficiently (G2), while
still allowing for maximum flexibility (G4).

7.2 Cross-VM Wires

Although we use sensor/actuator networks for many purposes, including application lifecy-
cle control [4] and link latency detection for victim selection in work stealing algorithms, a
key use-case is the delivery of data within the reducer network used for aggregation. For that
purpose we need a mechanism to establish cross-VM wires, which are wires that connect
a sensor deployed in one Java Virtual Machine (VM) with an actuator in another VM (see
Figure 13).

Technically, our solution is implemented by a specialized wire factory providing stubs
on both ends of the wire. While the stub collocated with the actuator (called the actuator
wire stub (AWS)) is created locally to the requesting client, the wire factory implementa-
tion creates a sensor wire stub (SWS) in the VM of the target sensor. After the stubs have
been created, the AWS establishes a connection to the SWS within the COHESION overlay
network using a generic connection establishment (GCE) facility. Thus, aggregation trees
can span arbitrarily segmented physical networks (S4). GCE hides the details of the con-
nection establishment and maintenance process (handshake, half-open connection detection
and connection shutdown). As wire attributes and filters are transmitted as part of the hand-
shake process, the fact that the wireables are connected to a non-local partner is completely
transparent. Hence, we can use the wire flow control mechanisms described above to control
the aggregation process in a fine-grained way.

7.3 Measurement Scheduler

Every phase in the aggregation process (cf. Section 5) consumes resources. In a P2P Grid
scenario this can cause problems: First, a P2P Grid application may run in parallel to other
processes on the host system sharing a common limited pool of resources. Hence, the re-
source consumption of the P2P Grid application must be limited to avoid that the user
experience is impaired (S2). Second, hosts are highly heterogeneous in a P2P Grid (S3).
Measurement schemes tailored for one host may easily overstress less powerful hosts. To
circumvent these problematic situations, our sensor management facility provides a mea-
surement scheduler that allows to limit resource consumption by specifying quotas for each
type of resource and per-sensor priorities to control which sensor consumes which part of the
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Fig. 14 Resource share assignment algorithm based on lottery scheduling.
1: procedure CREDITSHARE(rid)
2: sensors GETSENSORS(sensorPod)
3: ticketsoverall  0
4: for i 1, SIZE(sensors) do
5: sid GETID(SENORS[i])
6: ticketsoverall  ticketsoverall + GETPRIORITY(sid,rid)
7: end for
8: ticket RANDOM(0 . . . ticketsoverall)
9: c 0

10: for i 1, SIZE(sensors) do
11: sid GETID(SENORS[i])
12: c c + GETPRIORITY(sid)
13: if c >= ticket then
14: shares[sid,rid] GETQUOTA(rid) ⇤ 1

Tassign
15: break
16: end if
17: end for
18: end procedure

available resource share. When a sensor can’t acquire enough resource shares to perform a
scheduled measurement, the measurement is skipped preserving the shares already acquired
for the next attempt. Note, that skipping a scheduled measurement does not slow down or
stall the overall aggregation process as the reducer network operates asynchronously (see
Section 9). However, as no new sensor value has been created, the old value is reused by
the reducer on the next higher level. Although we have only implemented CPU time and
network bandwidth resource types for the purpose of this paper, our scheduler allows to
plug-in arbitrary additional resource types. Each resource implementation must provide a
method that is used to predict how many resource shares are necessary for the next task
execution. While this mechanism obviously can’t enforce hard resource consumption limits,
it still ensures compliance when resource utilization is averaged over several executions.

Our scheduler implementation is based on lottery scheduling [32]. This randomized
scheduling mechanism allows control over relative execution rates and intrinsically prevents
starvation. The simplified routine shown in Figure 14 is executed every Tassign time units (the
default value is 10 ms) for each resource. First, the algorithm fetches all deployed sensors
using the sensor pod (line 1) and sums up their priorities resulting in the overall number of
tickets ticketsoverall . After the winner ticket has been drawn (line 8), the associated sensor
is computed by recomputing the priority sum, stopping as soon as the subtotal exceeds the
ticket number. Finally, the resource share, i.e., the product of Tassignand the assigned resource
quota, is attributed to the winning sensor. Figure 15 illustrates the process for two sensors
competing for CPU time. The algorithm actually used in our solution is optimized for speed:
First, it lazily recomputes ticketsoverall only when a sensor is de-/registered or a priority is
updated. Second, the winner calculation loop is executed only once, operating on an array
of winner tickets, i.e., one winner per resource type.

8 Virtual Tree Topology Management Architecture

In this section, we describe the design and implementation of our Virtual Tree Topology
Management (VTTM) framework. Both tree management methods presented in Section 6
require that the framework supports a number of basic management operations on V-Nodes.
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Fig. 15 The lottery based resource assignment process for two sensors. sensor:/a wins the CPU time share
lottery. As the awarded share satisfies its requirements, the next measurement request will be processed.

As defined in Section 6, V-Nodes are inner nodes of an overlay tree structure which are
simulated by hosts. They are uniquely identified with respect to the hosting COHESION
node, which is in turn uniquely identified within the group it belongs to.

The management operations on V-Nodes include creation and destruction of trees and
V-Nodes at runtime and link establishment between V-Nodes on different levels. A concrete
tree management scheme employs a strategy to control when and where to create/destroy
V-Nodes and how they should be interconnected. Amongst others, these strategies can be
implemented either explicitly in Java (ID-based method) or as a state machine (competition-
based scheme). Anyway, VTTM must provide abstractions to model the topology on which
these strategies can operate on. As these abstractions must be constructed/destroyed at run-
time, stored in variables, and passed as arguments, they are realized as first-class objects,
which means they are represented at the language-level as ordinary Java objects. Besides
V-Nodes, the remaining VTTM abstractions are V-Tree and V-Links defined as follows:

V-Tree. A virtual tree or V-Tree is a container for V-Nodes that can be dynamically created
and destroyed. V-Trees are scoped by a hosting group to foster isolation and are uniquely
identified by the tuple (group,name). An application or component developer is free to
instantiate as many topologies as required.
V-Link. Each V-Node can define a set of virtual links or V-Links. A V-Link is defined by
its role for the owning V-Node (i.e., CHILD and PARENT). They can be either VACANT or
ASSIGNED. In the latter case a (remote) partner is assigned to the local link and vice versa.
Note that V-Links are pure logical links, i.e., no physical link is established.

Instances of these abstractions are created through the owning entity. The V-Tree acts as a
factory for contained V-Nodes. The same relation holds for V-Nodes and V-Links.
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Fig. 16 Component diagram for VTTM link establishment infrastructure.

8.1 Link Establishment

While creating and destroying V-Nodes is straightforward and is thus directly controlled by
the tree management scheme, assigning of V-Links is a potentially complex task, since the
process must be coordinated between the prospective link partners. Thus, VTTM provides
a flexible infrastructure (see Figure 16) that supports a wide range of link partner selection
strategies. A Link Establishment Engine (LEE) monitors the state of all V-Links for a given
tree. For each vacant link the identifier of a potential link partner is fetched from a Candi-
date Pool. As the identifier contains the host ID, the engine can initiate a connection attempt.
On success, the V-Link is assigned. Many V-Trees will have more than a single unassigned
V-Link. To speed up tree construction, VTTM allows for fully concurrent link establish-
ment: engines can handle multiple parallel incoming connection attempts and are trying to
establish links with multiple other V-Nodes concurrently by employing a pool of worker
threads. If any attempt is successful, the link becomes assigned and all other connection
attempts for the same link are immediately aborted. Hosts can tune the level of concurrency
and thus can trade off link construction speed against resource consumption. To implement
the schemes presented in Section 6, we provide custom candidate pools: While the pool for
ID-based tree management can compute the single uniquely identified partner for any link
by simply evaluating the total order R imposed on the set of available nodes, the one for
our competition-based tree management scheme uses information available from the local
vacant child link cache.

8.2 Resolver Service

VTTM provides a generic query mechanism that can be used to collect information from V-
Nodes by propagating queries along the edges of the tree (see Figure 17). Query evaluation
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Fig. 17 Processing of a simple VTTM query that is forwarded along all child links. It returns the local V-Node
identifier, if the V-Node has two assigned child links.

on each V-Node is a double-stage process: First, it is evaluated, whether the query should
be actually executed locally, forwarded along the currently selected V-Link, or both. If the
first phase yields that the query should be executed, this happens in the second phase and
the result is sent to the initial source of the query, where a callback is invoked to handle the
incoming result. We use the resolver service to support MAPS, which are introduced in the
next section.

9 Hierarchical Aggregation Service

In our system, every node can request any number of aggregations by issuing an aggregation
request through an aggregation service. An aggregation request consists of a sensor identi-
fier and a set of aggregation points (see Section 6), e.g., (sensor : /network/bandwidth?inter f ace =
eth0,{(xmpp : // f 28aa1@cohesion.de : 80/ f 28aa1�35,2)}). While the former specifies
the sensors whose output should be aggregated, the latter specifies the set of V-Nodes from
which aggregated values are to be fetched. Due to the dynamism prevalent in P2P Grids, the
selection of V-Nodes from which to fetch aggregated values is no straightforward task. For
example, a host may be interested in receiving aggregate values from all V-Nodes at a certain
level within the aggregation tree. Since nodes come and go unpredictably, the composition
of the set of matching V-Nodes is in a constant state of flux. Exposing that dynamism at
the application level would considerably increase application complexity. Thus, we provide
Managed Aggregation Point Sets (MAPS). A MAPS is a dynamic set of V-Nodes, which
automatically adapts to changes in the underlying tree topology. MAPS’ make use of the
topology resolver service to find V-Nodes satisfying a set of custom constraints defined by
the application. For example, we use a MAPS to get all V-Nodes on a given level in our
monitoring application (see Section 11).

9.1 Reduction Tree

The aggregation system deploys a reduction tree to serve aggregation requests. A reducer
is located at every V-Node of the aggregation tree. A level-l reducer is a component com-
posed of an actuator, that consumes data from level-(l �1) reducers, applies the reduction
function to the set of collected values, and delivers the result to level-(l + 1) reducers. To
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Fig. 18 Inter-Group isolation and intra-group sensor-based sharing of the reduction network.

support on-demand instantiation, reducers are implemented as a sensor factory. This means
that a reducer is created as soon as someone tries to create a wire to it (see Section 7). In
addition, wires attached to the sensor of a reducer are automatically replicated on the next
aggregation layer. For each incoming wire of the sensor of a level-(l ) reducer, an outgoing
wire with the same wire attributes (including filters) is created and connected to the level-
(l �1) reducer. Hence, the creation of a wire to a set of top-level reducers defined by some
MAPS object, results in the creation of a reduction network, consisting of all reduction trees
mounted at the top-level reducers of the aggregation request. As wire attributes are propa-
gated down the aggregation tree, the target sensor is configured to push values periodically
at the rate specified when creating the wire to the top-level reducer. Wire propagation de-
couples reducers and thus allows to respect resource consumption limits enforced by the
measurement scheduler (see Section 7.3). Since reducers are disposed as soon as no incom-
ing wire is attached for a given period of time, wires are progressively destroyed down the
aggregation tree. Hence, the whole reduction network is eventually garbage-collected when
all wires are detached from the top-level reducers.

9.2 Isolation and Sharing

Maintaining the aggregation infrastructure consumes resources. Thus, in order to use the
infrastructure most efficiently (G2), it should be shared whenever possible without eroding
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isolation. Since in COHESION services are provided on a per-group basis, aggregations re-
quested by different applications are isolated, preventing any undesirable interference across
applications (Host I and Host II in Figure 18). However, the aggregation infrastructure can
still be shared among different applications simply by using a shared group (Hosts I/II and
Host III in Figure 18). As sensor visibility may be restricted to certain groups, inter-group
isolation enforces access control as required by (S4).

Our system establishes a single aggregation tree per group. For example, requests issued
by Host I and Host III are processed using the same shared aggregation tree located in Group
A. Hence, the number of comparatively expensive tree maintenance operations is reduced
to a minimum. On top of that, a reduction tree is deployed for each sensor, i.e., reducers
are used to process all aggregation requests for that sensor. Note that reducers are simple
wireables. Hence, reducer networks are lightweight, and maintaining a private network for
each sensor causes not much stress on the system.

9.3 Storage and Propagation of Measurements

In many aggregation use cases a history of aggregated values is required. The required stor-
age for time series’ of measurement data is called a Management Information Base (MIB)
[7,33]. We use a round-robin database [34] as MIB, so that system storage footprint remains
constant over time. To avoid the overhead of MIB maintenance, we do not update MIBs by
default. Instead, an on-demand instantiated actuator that is auto-wired to reducers can be
deployed, when aggregation history is actually required.

Often other nodes than the requester are interested in receiving aggregate values. Thus,
an aggregation system can be extended to provide a service for propagating aggregate val-
ues. SDIMS [8] provides a very flexible implementation of such a service as part of their
Update-Upk-Downj aggregation and propagation strategy. For a pair (k, j) aggregation is
performed up to the k-th level and aggregate values are propagated downward for j levels.
Our approach is even more flexible, as aggregation source V-Nodes are specified by a MAPS
object, that can reference any subset of the V-Nodes of the aggregation tree. Propagation can
be done either by groupcasting aggregate values or by using the resolver service to deliver
values along the edges of the aggregation tree. Note that the former is in general much more
efficient in P2P Grids when all nodes are interested in updates, since efficient low-level
broadcast techniques (e.g., broadcast domains in LANs) can be used (at least within net-
work segments). Since the propagation strategy in our system is not tightly coupled with the
aggregation strategy as in SDIMS, we can even support things like conditional propagation,
where aggregate values are propagated only if a certain condition holds. As in the case of
MIB maintenance, propagation is implemented as an on-demand instantiated actuator that
is auto-wired to reducers.

10 Evaluation

To substantiate our claims concerning efficiency and scalability of our aggregation system
and to demonstrate the benefit of integrating capability-awareness into tree management
schemes, we conducted comparative studies on a compute cluster consisting of Intel Xeon
2.66 GHz processors. Our evaluation supports three main conclusions: First, our results con-
firm the assumption that the ID-based tree management scheme would clearly outperform
the competition-based scheme, because it was primarily designed for scalability. Second,
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Fig. 19 Timeshift is an extensible tool for post mortem analysis of multi-sourced event streams. It allows for
analysis (Ã) and comparison of multiple event streams ( ) and the resulting topologies (À) over time (Õ).

capability-awareness moderately increases construction time, but generates trees of signif-
icantly improved quality compared to their capability-agnostic counterparts. Third, our ag-
gregation system scales as expected: CPU utilization per host grows logarithmically with
respect to the group size, and linearly with respect to the aggregation frequency and the
number of attributes that are aggregated concurrently.

10.1 Tree Construction

Before we discuss our results concerning tree construction in detail, we elaborate on the
evaluation methodology and analysis tooling, which we believe, might be of interest to other
researchers in the field of tree or more generally topology management.

10.1.1 Methodology

Understanding the distributed process of tree construction is a challenging task that can be
substantially simplified by applying visualization techniques. As online visualization tech-
niques are limited to setups with a small number of nodes, we use a post mortem analysis
approach: Each participating host writes events, i.e., V-Node creation and destruction, V-
Link creation, assignment, unassignment and destruction, to a local event database. The
databases of all participating hosts are collected after the test run has finished and are fed
into our tool called Timeshift for offline analysis (available for download including examples
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from our website [35]). Figure 19 shows a screenshot of our tool. The tool generates a single
event stream by merging events from all host databases. To allow for easy comparison of
different executions, Timeshift allows to examine several event streams simultaneously. The
currently active stream is chosen from a list of available streams ( ). We use the popular
graph library yFiles [36] to provide a visualization of the aggregation tree (À). The time
slider at the top of the topology view (Õ) is used to navigate within the event stream. On
change, the underlying graph is modified by processing all events that happened between
the old and the new position. The tool supports smoothly animated real-time playback of the
event stream. This feature excellently supports the process of building a mental model of the
tree establishment algorithms and enabled us to reveal inefficiencies in our algorithm design
and bugs in their implementation. Finally, we have incorporated support for pluggable ana-
lyzer modules that are used to automatically distill metrics from the event stream. We have
implemented analyzers for the following metrics:

(NC) Number of Components. Computes the number of leaf-containing components nc(G, t)
in the graph G over time (Ã). A leaf-containing component is a component that contains at
least one leaf, i.e., level-0 V-Node. A fully established aggregation tree has a single compo-
nent spanning all leafs.

(AQ) Allocation Quality. Computes an indicator qalloc that describes how good the alloca-
tion of V-Nodes in a given tree is. qalloc is defined as

qalloc (G) =
Âv2V (G) l (v)c j (host (v))

Âv2V (G) l (v)
, (8)

where V (G) is the set of all V-Nodes in G, l (v) is the level of V-Node v, host (v) is the host
which simulates v, and c j (u) is the joint capability value of a host u as defined in Section 6.
Note, that this definition of qalloc penalizes allocations of incapable hosts on higher levels.

10.1.2 Results

To assess the performance and quality of our tree management schemes, we have chosen
a scenario with 64 hosts building the aggregation tree completely from scratch. Figure 20
shows the NC and AQ metrics described above for both the ID-based and the competition-
based tree management schemes with and without capability-awareness over time. For the
purpose of simulating a heterogeneous test environment, the joint capability value c j (u) is
computed by mapping the SHA digest of the hostname into the interval [0,1]. Thus, we have
uniformly distributed values that persist across executions.

Completion Time We first look at completion time, which is the time that elapses until
there is only a single component left or, in other words, nc(G, t) drops to one (this includes
the time necessary for creating and joining the aggregation group). Despite the overhead
for transmitting the joint capability value as part of the host identifiers, there is no signif-
icant slowdown for the ID-based tree management scheme with capability-awareness. The
slightly higher variation of [21s,38s] with capability-awareness compared to [26s,34s] with-
out capability-awareness is negligibly small in relation to the average execution times of 27s
with capability-awareness and 29s without capability-awareness, respectively.

For the competition-based scheme, we observe an increment of approximately 10% that
is due to the fact that more capable hosts eventually displace less capable ones, which causes
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(a) ID-based scheme without capability-awareness
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(b) ID-based scheme with capability-awareness
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(c) Competition-based scheme without capability-
awareness
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(d) Competition-based scheme with capability-
awareness

Fig. 20 Number of leaf-containing components (NC) and allocation quality (AQ) for our tree management
schemes. The graphs show the mean value and the range between the minimum and the maximum values
within the data set over time.

many small tree reconfigurations slowing down the overall construction process. Completion
times range within [275s,351s] without capability-awareness compared to [294s,379s] with
capability-awareness and average to 300s and 331s, respectively.

The fact that the competition-based scheme is outperformed by the ID-based scheme
by a factor of ten is due to the following reasons: First, the ID-based scheme is optimal as
creating the topology is just a matter of joining the aggregation group. Since in any topology
management scheme each host at least has to join the aggregation group, the completion
time of the ID-based scheme actually is a lower bound. Second, the gossiping approach for
vacant link announcement involves O(log(|G|)) dissemination time [37]. As the number of
potential link partners decreases with the V-Node level, the time to find a suitable partner
grows towards the root. This observation is substantiated by the fact that half of the links
have been established after⇡ 75s and the tree construction process decelerates considerably
afterwards (see Figure 20c). Third, promotion of a host across the tree levels does not happen
interleaved but incrementally. Fourth, we have linked the promotion probability of a level-l
V-Node to the number of already existing level-l V-Nodes (see Equation 6 in Section 6.2.1)
to inhibit oscillations. However, this comes at the price that P{u promotes} is less than 1
and decreases when the number of level-l V-Nodes approaches 2l . Hence, the time that
elapses until a V-Node ready for promotion actually promotes can be a multiple of Tpromote.

Allocation Quality If we look at the allocation quality, we observe significantly better values
for the capability-aware schemes, namely 0.8 for the ID-based and 0.75 for the competition-
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(a) ID-based scheme without capability-awareness.

(b) ID-based scheme with capability-awareness.

Fig. 21 Final aggregation trees for a 64 hosts setup. Darker V-Nodes are located on less, brighter V-Nodes are
located on more capable nodes. Capability-awareness obviously results in a significantly improved allocation
quality (more brighter V-Nodes towards the root V-Node in (b) than in (a)).

based scheme. Note, that the allocation quality is by construction perfect for the ID-based
scheme. In contrast, the average allocation quality of the capability-agnostic schemes are
0.45 for the ID-based and 0.5 for the competition-based scheme.

Figure 21 shows an exemplary V-Node allocation for both the ID-based scheme with
and without capability-awareness for a fully constructed binary aggregation tree in a 64
host setup. Allocations for the competition-based scheme are similar and are omitted for the
sake of brevity here. From these illustrations it becomes obvious that the capability-aware
schemes are much more robust in the face of host departures, as higher levels of the tree are
simply less likely affected.

10.2 Aggregation

To verify the scalability of our system, we conducted a series of tests evaluating its behavior
when the number of nodes within the aggregation group, the frequency with which aggre-
gates are computed, and the number of distinct aggregations performed concurrently are
scaled. Figure 22 shows the results of this evaluation.

Group Size Figure 22a shows the CPU utilization for differently sized aggregation groups
and an aggregation frequency of 1Hz. While the minimum CPU utilization is independent of
the group size and remains roughly constant at 1%, the logarithmic growth for the average
and the maximum CPU utilization is evident. This result is no surprise as CPU utilization per
V-Node is constant and the most utilized host creates O(log2 |G|) V-Nodes. These numbers
indicate that our system can be expected to scale up to thousands of hosts before CPU power
will become an issue.

Aggregation Frequency Figure 22b shows the CPU utilization for different aggregation fre-
quencies within a 64 host aggregation group. As before we have traced CPU utilization for
the least utilized, the most utilized, and the average host. As expected, CPU utilization grows
linearly with respect to the aggregation frequency for all three host types. According to these
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Fig. 22 CPU utilization during aggregation. The graphs show values for the least utilized host, the most
utilized host and the average utilization over all participating hosts.

results, our system supports (abusive) aggregation frequencies beyond 10Hz. CPU stress for
more realistic use cases with frequencies between 0.1Hz and 1Hz ranges between 2.3% and
3% for the average host and between 4.8% and 6.5% for the most utilized host.

Attribute Count The last scalability characteristic covered by our evaluation is the number
of attributes that are aggregated concurrently. Figure 22c shows that CPU usage for different
attribute counts within a 64 host aggregation group and an aggregation frequency of 0.1Hz.
The numbers clearly show that CPU utilization for the least utilized, most utilized, and the
average host grows linearly with the number of attributes. Extrapolating from these results,
we can expect our system to support a sufficiently large number of concurrently aggregated
attributes.

11 Use Case: System Monitoring

To demonstrate the feasibility of our solution, we have implemented a system monitoring
application based on the information aggregation system described above. It consists of
two parts: a COHESION bundle that exposes functions of the aggregation service, called the
Monitoring Gateway, and an Eclipse plugin that connects to this bundle, handles node and
metric selection and visualizes the collected data (see Figure 23).
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Fig. 23 Our monitoring application based on Eclipse with tree navigation ( ), visualization of several at-
tributes (with history) for the two subtrees mounted at the currently selected V-Node (À), and a list of all
available sensors (Ã).

11.1 Monitoring Gateway

The Monitoring Gateway makes it possible to use certain aspects of the aggregation service
remotely. Functionality of the gateway includes: requesting the root V-Node of the aggre-
gation tree, getting the children of a given V-Node, and receiving a list of available metrics
(sensors). Aggregation on a given V-Node for a given sensor and time period can be started
or stopped, and stored aggregation data can be requested.

To be used as an entry point for browsing the system, the root V-Node of the aggregation
tree is determined by using the resolver service (see Section 8.2) by simply walking along
the edges of the tree until no further parent node can be found. Children for a V-Node
can be queried directly using a given aggregation point. Together, these mechanisms are
necessary to allow navigation inside the aggregation network. Finally, a list of available
metrics is obtained by listing all locally available sensors using the sensor pod (see Section
7) assuming that they are the same on all nodes.

Requests for metrics are forwarded to the aggregation service triggering the creation of
a new reducer network for the respective sensor. Depending on the selected V-Node being
a leaf in the aggregation tree or not, the aggregation request contains either a single aggre-
gation point or a dynamically updated MAPS (see Section 9), comprising all of its children.
By default, metrics are summarized by addition at each inner V-Node. To allow for later
modification or cancellation, requests are stored using a unique request identifier.
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11.2 Eclipse Monitoring Plugin

The Eclipse Monitoring Plugin connects to the Monitoring Gateway using JMX [38]. The
same RRD implementation used as the MIB (cf. Section 9.3) is used to store and prepare ag-
gregated metrics for visualization. The graphical user interface is implemented as an Eclipse
perspective consisting of three views (see Figure 23):

Node Tree View ( ). Shows the active V-Node, its children (if any) and the path to the
root V-node. It can be used to navigate the aggregation network, thereby moving all running
aggregations to the currently selected V-Node. On startup, the active V-Node is set to the
root V-Node. Changes in the aggregation tree structure are automatically reflected.
Metrics View (À). Displays graphs of currently active aggregations. Each graph contains
aggregated values from all children of the V-Node currently selected in the node tree view.
These values are stacked on each other and drawn in different colors. Graphs are updated
as soon as new values become available. The amount of displayed metrics history can be
chosen from a drop down menu and ranges from one minute to one year. Each child V-Node
can be selected to become the new active one by pressing the respective button underneath
a graph.
Metric Tree View (Ã). Lists available metrics and toggles their activation status. For easier
navigation, metrics are arranged in a hierarchical tree determined by the unique identifier of
the corresponding sensor (cf. Section 7). On activation, a metric is marked with a green light
and becomes available inside the metrics view.

12 Conclusion

In this paper, we present the design, architecture, and implementation of an information
aggregation system for P2P Grids. In contrast to general information systems, P2P Grids
are used to solve computational hard problems in mid-scale setups and thus often require
most efficient instead of most scalable algorithms. To satisfy both requirements, we propose
two tree management schemes: one focusing on efficiency, the other on scalability. As re-
sources in P2P Grids are heterogeneous in terms of capability (processing speed, network
bandwidth, etc. ) and volatile, we designed our tree management schemes to respect these
characteristics, resulting in an increased overall performance, especially in the face of tree
reconfigurations on node arrivals and departures. To support a broad range of applications,
our architecture was designed to be exceptionally flexible concerning all phases of the ag-
gregation process. To limit resource consumption (e.g., CPU time, network bandwidth, and
secondary storage capacity) by the information aggregation subsystem, we employ a mea-
surement scheduler based on resource quotas and lottery scheduling. Thus, our approach
respects the resource owners sovereignty over his system.
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