
!
!

!
!
!

!"#"$$%$&"'(&)*+,#*-.,%(&/012.,*'3&4#0.2&
"#$%&'(#)'!*+ !,*($-'#&!./0#)/# !

1#-'20)3#)!4)05#&60'7!
!
!
!

5,#.6,.#%(&60$$"-0#",*7%&80#9:$08&(%+*3'&
&

8%&9-6!:#2;!%);!<*2+3%)3!=2*/>0)3#&!!
!

?@//#$'#;!A##&B1#50#C#;!8%)-6/&0$'!D#&60*)E!
!
!
!
F!GHIJK!L>06!(%)-6/&0$'!5#&60*)!06!(%;#!%5%02%M2#!-);#&!'>#!,,B=NBO,BO"!PKH!20/#)6#!
>''$QRR/&#%'05#/*((*)6K*&3R20/#)6#6RM7B)/ B);RPKHR!
!
L>#!+*&(%2!$-M20/%'0*)!06!%5%02%M2#!%'Q!
>''$QRR;SK;*0K*&3RIHKIHITRUK+-'-&#KGHHVKIGKHHW!
!

!
!

!
!

!"#$%&'() *('+,--. / 0
"1$23#04056"#7180*('+0"9+0:3';<"9<0='3&2%9<(#5 / 0
$%$'(0405>$#1&$1#(+0&3''"?3#"$%@(0A3#7;'3A0+(8 %<95/0
B31#9"'0405C1$1#(0D(9(#"$%390E3FG1$(#0>H8$(F85/ 0
@3'1F(0405,I5/ 0
91F?(#0405J5/ 0
G"<(80405JKLMMJIK5/ 0
H("#0405,--.5/ 0
%8890405-NJOMOK.P5/0
+3%04052$$G8QRR+3%S3#<RN-SN-NJRBS;1$1#(S,--LSN,S--I5/0
1#'040 52$$GQRRAAAS8&%(9&(+%#(&$S&3FR8&%(9&(R"#$%&'(RG%%R>-NJOOK.P-L--,N--50

T!
!

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.future.2008.12.005

Structured Collaborative Workflow Design

Markus Held Wolfgang Blochinger ∗

Eberhard-Karls Universität Tübingen
Symbolic Computation Group
Sand 14, 72076 Tübingen

Germany

Abstract

Workflow design is often an effort of distributed and inhomogeneous teams, thus making
tool support for collaboration a necessity. We present a novel concept of collaborative work-
flow design which combines cooperation and workflow model analysis. Workflow analysis
is simplified using workflow metrics, which help identifying problematic aspects of the
workflow model. Our findings are implemented in a collaborative workflow design system,
which is easily accessible on the Web, but provides a desktop like user experience.

Key words: Collaborative Workflow Design, CSCW, BPEL, Web 2.0, Rich Internet
Applications

1 Introduction

1.1 Workflows as a Means and Product of Collaboration

In recent years Scientific Workflows have enormously gained importance [1], while
Workflow Management has been a major aspect of enterprise systems since the
1990s. Based on Web Services, the Business Process Execution Language (BPEL)
[2] has gained the status of a standard language for enterprise workflows. Scien-
tific workflow management, on the other hand, still lacks common standards [3],
although BPEL has successfully been applied [4] [5].
∗
Email address: blochinger@informatik.uni-tuebingen.de (Wolfgang

Blochinger).
URL: http://www-sr.informatik.uni-tuebingen.de (Wolfgang

Blochinger).

Preprint submitted to Elsevier 28 August 2008

Contemporary software development in general is a task for teams, whose members
are often scattered among different sites. A trend toward global software develop-
ment makes it desirable to access resources anywhere and to coordinate develop-
ment at distant sites [6]. Software development teams can be inherently distributed,
as scientific research is often conducted in multi-institutional projects. Hence, col-
laborative software development tools become a necessity [7]. As discussed subse-
quently, this is especially true for workflow development.

The scientific workflow design process can involve people from very different back-
grounds. Though some scientists will be eager to work with graphical workflow ed-
itors, it cannot be expected that they will fully comprehend the details of a workflow
language. As [8] points out for engineering applications, we have to distinguish be-
tween domain and grid experts involved in workflow design. Domain experts bring
in their knowledge about the high-level scientific processes to be modeled, while
grid experts utilize their knowledge about grid infrastructure and implementation
details.

Workflows often integrate capabilities and resources of distributed sites. Differ-
ent research groups pool their services, thus forming Virtual Organizations [9].
Gil et al. point out that workflows are used by scientists ”to collaborate with each
other across organizations and physical locations” [10]. The activities of a work-
flow can thus include services provided by different vendors, business units, or
research groups. Hence, the correct integration of these services may require spe-
cial knowledge only available at a remote site. Moreover, workflow design is the
most dynamic part in building and executing advanced grid applications, further
driving the demand for sophisticated tool support with collaborative features. Gil et
al. conclude [10]: ”Scientific applications are driving workflow systems to examine
issues such as [...] collaborative support for workflow design [...].”

In 1987 Osterweill has pointed out that ”Software Processes are software too”,
which greatly inspired Software Process Improvement during the 1990s [11]. We
argue, that workflows are at least as much a product of collaboration as they are a
means of organizing collaboration. Summing up, we see a need of tool support for
collaborative workflow design in a way that enables easy integration into existing
Problem Solving Environments.

The same arguments for collaborative workflow design, we have presented here,
also apply to enterprise workflows. In business, distributed software development
teams are an effect of globalization and outsourcing. Moreover, enterprise work-
flows frequently involve several departments, which may be scattered across coun-
tries or even continents. Finally, business or engineering processes are designed by
domain experts as well.

2

1.2 An Example of Collaborative Workflow Design

As a use case, we assume a life science project, that spans several research groups in
different countries. In the project, a biologist from Germany and a physician from
France are designing an in-silico experiment composed of several Web Services.
New, non-trivial Web Services needed in the experiment are provided by research
institutions in several European countries. To achieve a correct integration of these
services, partners from the provider institutions have to be contacted. The results of
the workflow are to be stored in a database located in Belgium. Figure 1 illustrates
the situation of the project partners.

Fig. 1. A workflow design collaboration.

The workflow project is a collaboration of specialists that are too far away from
each other to meet face-to-face. We can further observe, that the domains of exper-
tise of the participants differ from each other, e.g. the biologist and the physician
share knowledge about the biological process to be modeled, while the service
providers know best how to configure their services. As none of them is very expe-
rienced in workflow design, they consult a workflow expert.

Bridging the gaps between distinct domains and cutting the geographic distances
between team members requires support by a collaborative software system. Col-
laborative manipulation of a workflow model implies that no single person has
a complete view of the model. However, a team leader needs to make decisions
about how to proceed in the collaboration, e.g. by assigning tasks to team mem-
bers. A collaborative workflow design system should thus help the team leader in
assessing workflow models. Such workflow analysis support has to consider that
the workflow model is ”under construction” and that it is the result of the cooper-
ation of distinct partners. Verification techniques can prove the syntactic correct-
ness of a workflow model, but will not help in identifying syntactically correct but
troublesome parts of the workflow, i.e. design flaws. Although collaborative devel-
opment improves the integration of domain expertise and technological expertise
in a workflow, it also yields the risk that design flaws are left unnoticed, since no
single member of the design team has a complete view of the model all of the
time. Finding design flaws in source code can be simplified by using software met-

3

rics. As the team leader needs to identify design flaws in the workflow model, we
propose to use workflow metrics in the collaborative workflow design system, i.e.
workflow-specific software metrics. The team leader can use these metrics to gather
information, which can help identifying design flaws in the workflow model.

Collaborative development of Scientific Workflows is a natural fit for Problem
Solving Environments, which are often implemented as web portals. Moreover,
department policies can prevent the installation of yet another software package
on client machines. Thus, the collaborative workflow design system should be pro-
vided as a web application.

However, classical web applications cannot provide real-time interactivity and lack
the look and feel of desktop GUIs. Many users, on the other hand, will only accept
the system if they feel comfortable with its interface. Hence, we will use Web 2.0
technology, which enables desktop-like user experience and synchronous interac-
tion of team members.

1.3 Scope of the Article

In this article we make the following contributions:

(1) We describe fundamental issues in realizing collaborative workflow design
systems. We point out, how collaborative tools are to be used, which function-
alities they are to provide and how to keep the workflow models on each client
consistent.

(2) We augment collaborative design with workflow analysis using a set of work-
flow metrics, which can be used to assess the maturity and quality of a work-
flow model and to identify sub-workflows which should be refactored.

(3) We show how these principles have been implemented in a Rich Internet Ap-
plication.

This article is an extended version of our paper ”Collaborative BPEL Design in a
Rich Internet Application”, presented at CCGrid’08 [12]. We extend our previous
work by giving a more detailed description of collaborative workflow design and
introducing new mechanisms for coordinating the work of team members. We also
present workflow metrics as a means of workflow model analysis, which help team
leaders in steering collaborative design.

The rest of the article is organized as follows. In Section 2 we present the back-
ground of our work, by introducing BPEL, Workflow Metrics and Web 2.0 tech-
nology. Afterward we will describe the general process of collaborative workflow
design in Section 3 and consider requirements on collaborative workflow design in
Section 4. Subsequently, in Section 5 we will present methods for achieving model
consistency in web-based collaborative workflow design. Section 6 specifies a set

4

of pertinent workflow metrics for workflow analysis. In Section 7 we present our
collaborative workflow design tool HOBBES. In Section 8, we will give an exam-
ple of collaborative workflow design and analysis. We will review related work in
Section 9 and conclude in Section 10.

2 Background

2.1 Workflows and BPEL

The XML-based Business Process Execution Language (BPEL) has become the de-
facto standard for business workflows and is a key element of the Service Oriented
Architecture (SOA) [2]. Ezenwoye et al. have shown the general applicability of
BPEL for grid services [5].

BPEL control flow is a mixture of block-oriented and graph-oriented elements.
Atomic tasks like service invocations or waiting are called basic activities. Control
structures are expressed as structured activities (e.g. Sequence, If, While), which
can contain child activities. Concurrency can be modeled using the structured ac-
tivities Flow and ForEach. Flow allows the definition of Directed Acyclic Graphs of
activities, while ForEach loops may be marked as ”parallel”. BPEL employs XPath
as a standard expression language [13]. Expressions are used for conditionals, for
triggering links between activities and for assignments.

2.2 Workflow Metrics

A Software Metric is an algorithm which computes a numeric value from source
code to measure properties of a software system. Software Metrics are a means of
steering development processes by assessing the quality of a software product and
finding imbalances in the code base. They typically cover aspects like modularity,
cohesion and coupling, source code complexity and size. Though no single metric
can serve as a sufficient indicator of software quality, sets of different metrics can
give hints about the structure of a software product.

Since workflow languages differ from general purpose programming languages,
Workflow Metrics are a special class of Software Metrics. For example, Vander-
feesten et al. consider modularity as an aspect which does not apply to workflows,
because workflow languages do not have any module concept and usually treat their
activities as black boxes [14].

Workflow metrics are useful for collaborative development, since they enable rea-
soning about workflows in quantitative terms, thus improving communication about

5

manipulated workflow models. Moreover, some metrics help identifying unusually
structured sub-workflows, thus guiding workflow development.

2.3 Web 2.0 Technology

The term Web 2.0 has been popularized by Tim O’Reilly as a synonym for a set
of advanced web application paradigms [15]. Web 2.0 applications share several
common features [16][17]:

• Web 2.0 applications enable collaboration, e.g. via sharing and annotation (tag-
ging) of artifacts.

• Virtual communities and social networks encourage user participation.
• APIs are exposed as REST-ful web services. The acronym REST (”Representa-
tional State Transfer”) in this context denotes the usage of plain Text/HTTP or
POX/HTTP-based (”Plain Old XML”) protocols to invoke services [18].

• Sophisticated GUIs are provided as Rich Internet Applications (RIAs).

Rich Internet Applications provide both web access and desktop like usability. They
often are identified with ”AJAX” technology [19], though alternatives exist. AJAX
stands for ”Asynchronous Javascript And XML”. It denotes the combination of
Javascript and HTML Document Object Models with an XMLHttpRequest-API,
that enables asynchronous server queries.

The Adobe Flex framework, which is based on the Flash plugin, appears to be
the most stable and most complete RIA solution [20]. It supports declarative GUI
design in an XML-based language (MXML) with direct mapping to the object-
oriented scripting language Actionscript. Actionscript strongly resembles Javascript,
but includes (optional) build-time type checking and a class system. Flex supports
HTTP requests and its communication facilities can be enhanced with optional
server side components called ”Lifecycle Data Services” (LCDS), which among
other things enable messaging according to the Publisher-Subscriber pattern, i.e.
server-to-client notification.

3 The Collaborative Workflow Design Process

Weiseth et al. have identified three sub-processes of collaboration, which they call
coordination, production and decision-making [21]. Coordination denotes the plan-
ning and assignment of tasks to collaborators, while productionmeans collaborative
development. Decision-making is the base of coordination and requires analysis of
the manipulated artifacts. Our Collaborative Workflow Design approach accounts
for each of these sub-processes in distinct phases (see Figure 2).

6

Fig. 2. Overview of the collaborative workflow design process.

First, the team leader instantiates a new session in the collaborative workflow de-
sign system. She can make initial decisions by laying out and configuring elements.
Finally, the team leader will decide to share the workflow and invite team members.

Team members can join or leave at any time after sharing the workflow design
session. The team synchronously works on the design until the team leader decides,
it is time to analyze the quality of the workflow model. During the analysis and
annotation phase the workflow is globally locked, so that only the team leader has
full access. The team leader uses analysis tools, e.g. workflow metrics, to asses
the workflow and find sub-workflows that should be refactored. If the team leader
decides that the workflow needs further refinement, she will annotate the workflow
model to delegate responsibility for specific tasks in sub-workflows to individual
team members. Afterward she will switch the session to a new collaborative phase.

Figure 3 provides a more detailed description of the collaborative workflow design
process, modeled as an Event-Driven Process Chain [22].

It shows, that workflow analysis (decision-making) and annotation (coordination)
are closely related, as coordinative actions depend upon decisions. Both aspects
involve only the team leader and require a workflow model that is left unchanged
by other users actions. Thus, in a collaborative workflow design system both can
be handled within the same phase.

In this paper we describe methods and present a software system to support this
Process Chain, with the exception of the hatched area. The Process Chain shows
that the same tools used for enabling collaborative workflow design can be used for
collaboration between a workflow expert and an administrator in case a workflow
deployment has led to problems.

7

Fig. 3. The complete collaborative workflow design process as an Event-Driven Process
Chain.

4 Requirements of Collaborative Workflow Design Systems

We will now discuss requirements for collaborative workflow design systems by
proceeding from general to more specific issues.

4.1 General Requirements

To enable the seamless integration of workflow technology in Problem Solving En-
vironments, workflow design tools will have to support collaborative work, must be
accessible on the web, and should provide a nearly desktop-like user experience.
Thus, we need a client that can be accessed from the web browser, but provides
a user experience similar to desktop applications. Users need to be able to create
team sessions, whose members work on the same workflow project and can syn-
chronously add, remove, and connect activities.

4.2 Relaxed WYSIWIS and Late Joining

A fundamental design decision for collaborative software is, which information
should be forwarded to other participants. A naive approach would be to give all
users exactly the same view on the shared document (strict ”What You See Is What
I See” (WYSIWIS)) [23]. In the case of complex documents (like workflows) this

8

would diminish productivity because it is unlikely that all parts of the document
can be shown in one view at the same time. A special concern arises if users at-
tempt to make conflicting changes to the view, e.g. scroll into different directions
or open pop-up windows. Such conflicts are sometimes dubbed ”scroll-war” or
”window-war”. Hence, a user’s actions should only affect another user’s view if it
is semantically necessary.

Begole et al. discuss several usability requirements for the collaborative adaptation
of legacy applications [24]. They especially point out that a user should be able to
begin sharing a document at any time after its creation, that users should be able to
join a shared session at any time (”late-joining”) and that users need to be allowed
to have independent views of the shared document (”location-relaxedWYSIWIS”).

4.3 Workflow Locking Mechanisms

Synchronous collaboration encourages users to work on the same objects at the
same time. This stands in contrast to each individual user’s demand for privacy
while working on a specific hard problem in a sub-workflow. Sub-workflows, how-
ever, may contain complex domain-specific logic. One way to enhance group aware-
ness — knowledge about other participants’ actions — is showing representations
of foreign mouse cursors, called telepointers. Telepointers make much less sense in
a web-based infrastructure due to the relatively high latency. Thus as an alternative
means of raising group awareness, we have to allow synchronous work but also
provide mechanisms to temporarily protect a user from being disturbed. To prevent
the possibility of one user blocking the progress of the workflow design process,
the team leader may grant or release such locks.

4.4 Collaborative Document Navigation

Additionally, there should be a way to lead another user’s view to a specific part of
the workflow. This resembles face-to-face collaboration, where participants hint at
a part of an object when communicating about it. Its implementation can be simpli-
fied, if the graphical representation reflects the tree structure of BPEL. Collabora-
tive navigation is not only a better alternative to telepointers when collaborating in
large, structured documents, but also improves awareness of dependencies between
team members, since it enforces direct communication.

The configuration of an individual activity may depend on knowledge from a do-
main expert and from an infrastructure expert. Consequently, it makes sense to pro-
vide means that encourage a direct negotiation of these parameters. We thus have
to provide means to enable two partners to collaborate on configuring a workflow
activity.

9

4.5 Design Project Phases

As the design process will often be split up into distinct phases (see Section 3),
which can be subject to a number of iterations, the team leader needs tool support
for terminating a collaborative phase. Phase switching has to be a very light-weight
operation to anticipate a quick alternation of phases. During the analysis phase
team members should not be forced to leave the session. The analysis and annota-
tion phase is non-collaborative, since any changes of the workflow by users other
than the team leader would make analysis impossible. Effectively, switching to the
analysis and annotation phase is equivalent to locking the workflow for other users
than the team leader. Hence it can be seen as a special case of the issues presented
in 4.3.

4.6 Workflow Metrics

As has been pointed out in Section 3, the team leader will need support for work-
flow model analysis, which has two main purposes. First, the team leader needs to
assess whether the workflow model is finished, i.e. it is runnable and it mirrors the
requirements. While the first can easily be verified from the source code, the second
has to be checked by a human being.

The second purpose is the detection of design flaws in sub-workflows. Design flaws
are not identical with errors in the workflow model. In contrast to errors, design
flaws do not affect syntactical correctness or prevent the execution of a workflow,
and thus can only be detected by a human user.

We are particularly interested in comparing manipulated artifacts according to their
size and complexity, to enable searching for ”code smells” or ”bad smells” which
indicate a need of refactoring [25]. In this context, complexity informally can be
understood as the intricacy of understanding a specific artifact. For instance, Car-
doso defines workflow complexity as ”the degree to which a process is difficult
to analyze, understand or explain” [26]. It is not to be confused with algorithmic
complexity of mathematical problems.

Scientific and business workflows are supposed to be reusable, so they should be
maintainable, adaptable, and comprehensible. Scientific workflows often are larger
than business workflows, making it harder to fulfill these demands. For scientific
workflows, performance is an additional factor, so parallelism should be exploited
and data-manipulation be avoided where possible.

Hence, a collaborative workflow design system should provide a view on several
workflow metrics, which help the team leader in decision-making. In particular,
recursively defined metrics are needed, that enable analyzing sub-trees of the BPEL

10

model.

4.7 Delegating Responsibility

After analyzing the workflow model, the team leader will prepare the next collabo-
rative phase. This preparation especially includes decisions about who is supposed
to work on which workflow parts. As sub-workflows in BPEL are induced by struc-
tured activities, this can be done by annotating activities. Hence, the team leader
should have a means of annotating an activity to express the delegation of a spe-
cific task to a set of team members. In addition to the delegation itself, in some
cases the affected sub-workflow should be locked for other team members. A spe-
cial case arises, if a sub-workflow is to be locked for all team members to prevent
further modification. The team leader also needs the right to remove these anno-
tations at any time in the future. The different delegations should be individually
visualized according to their effects for each team member.

4.8 Operation Granularity

One important difference between collaborative text editing and collaborativework-
flow design is the granularity of the manipulations. A workflow model consists of
entities like activities, links and control structures. These are relatively complex ob-
jects, represented by parameter maps and object relationships. Inserting, deleting
and connecting activities is handled by mouse input. Changing the configuration of
an activity is a very coarse grained operation, when compared to inserting or delet-
ing a letter. Hence operation messages are more coarse-grained when compared to
collaborative text editing systems.

4.9 Scalability

The whole software system defined by a workflow and its services will probably
be the product of a large group of developers. However, the design team for the
workflow itself will be significantly smaller. We expect workflow design teams to
consist of less than ten persons, according to Brooks the upper limit of a ”small
sharp team” [27].

Brooks uses the analogy of a surgical team, which consists of team members that
assume different roles. He stresses the role of a chief surgeon, similar to the team
leader in our approach. We believe that this estimation is realistic as e.g. the case
study on a collaborative workflow design process presented in [8] has three partic-
ipants who bring in their different kinds of expertise.

11

5 Collaboration and Consistency

5.1 Manifestations of Inconsistency

Amajor concern when implementing a synchronous collaborative workflow design
tool is to keep the workflow models on all participating clients consistent.

Inconsistency can manifest itself as divergence, causality violation, or intention vi-
olation [28]. Divergence means, that the resulting model of a collaborative design
process differs on the participants’ editors. Then it is not possible to decide, which
model is the ”correct” one or even if a correct model exists at all. Causality viola-
tion can happen if two operations, one of which is depending on the other, arrive
at a client in the wrong order. For example, the deletion of an element can only
succeed if the element has already been created. Intention violation means that the
intended effect of an operation is compromised by the order in which operations
are processed, e.g. if two clients demand to move an element of a sequence up one
step, the result could be that the element moves two steps up. Obviously the real
intention behind an operation cannot be decided upon in every case. If two users
simultaneously add an activity of the same type to a workflow it is unclear, if they
intended to model the same activity of the underlying process.

5.2 Algorithms for Enforcing Consistency

A classification of consistency algorithms can be found in the fourth chapter of
Jürgen Vogel’s dissertation [29]. Vogel distinguishes between soft state and hard
state approaches to sharing a model. In a soft state approach, one or more partici-
pants periodically announce the current state of the model. This method is simple
and does not need a reliable transport protocol. Its disadvantages are possibly high
notification times, frequent temporary inconsistencies, and very high data rates,
which makes it unsuitable for use on the web.

In a hard state approach, all operations are explicitly and immediately sent to all
clients. It needs a reliable transport protocol, extra support for late joining clients
and consistency has to be enforced by a special algorithm. Optimistic consistency
algorithms execute operations locally at once and try to recognize and fix inconsis-
tencies if they appear. Since they rely on every editor instance to enforce consis-
tency, they are well suited for peer-to-peer systems. Optimistic algorithms enable a
high responsiveness, but are hard to implement and verify. An example of an opti-
mistic approach is Operational Transformation [30][31]. Local operations are im-
mediately executed and then broadcast to the other editors. All operation messages
are tagged with vector clocks, thus implying a partial ordering of the operations.
Incoming operations from the peers are transformed to fit into the local model, thus

12

preventing inconsistencies.

Pessimistic consistency algorithms first check the validity of an operation and only
then propagate it. This means, that either those parts of a document which can be
affected by an operation have to be locked temporarily, or that the operations have
to be processed in a sequential order by one designated host.

Since we assume small teams (see Section 4.9), a pessimistic, centralized approach
can be applied, thus enabling an implementation within a client/server architecture.
Incoming operations are processed sequentially by a ”controller” routine to prevent
both divergence and causality violation.

Before actually executing an operation, the server gathers all needed elements. If a
resource is unavailable, i.e. if it is not a part of the workflow or if it has been locked,
the operation is aborted. Checking the preconditions of an operation is simplified
by the tree structure of BPEL, the small set of possible operations and their precise
semantics.

Operations are impossible, if they depend on a workflow element which does not
exist. For example, A wants to add an activity α to a structured activity σ. B has
deleted σ, which has not yet been propagated to A. The controller fails to look up σ
and then decides to deny the operation. A’s client gets informed about the deletion
of σ. It automatically navigates to the top element of the workflow and notifies A
about the deletion.

A special case is adding an activity to a structured activity, that can only have one
child (e.g. ForEach). If A and B concurrently try to add a child to such an activity,
only one operation will succeed. If user A’s add-operation fails, she will see the
addition of B’s activity and receive additional feedback by a pop-up notification.

Another special case is changing the sequence number of an activity that is a child
of a Sequence or another structured activity that depends on the order of its chil-
dren. Sequence numbers can only be changed by stepwise increments or decre-
ments, i.e. by switching the positions of two activities α1 and α2. Thus, the con-
troller has to check the existence of σ, α1 and α2 and that pos(α1) − pos(α2) = 1
to prevent intention violation.

Operations can either affect the BPEL structure defined by the model or its visual
structure. Changing the position of an element within a Flow affects the visualiza-
tion of the workflow, but not the BPEL model itself. Thus, concurrent drag oper-
ations within a Flow can lead to overlapping activities, which could be considered
as an intention violation. However, attempts by the system to prevent such a sit-
uation would probably lead to irritation of the users who can easily resolve it by
themselves by dragging the activity on top. If two concurrent drag operations of
the same element occur, it is impossible to decide, which one should succeed from
both user’s point of view, because drag operations are solely characterized by their

13

outcome.

5.3 Late Joining

As has been noted in Section 4.2, we cannot assume all clients to be present at
the beginning of a design session. A client can join a session after any number of
operations have been performed on the model. All announcements of changes by
the server are tagged with a counter. If a client joins a session, it first subscribes
to operation notifications and begins buffering all incoming operation messages.
The client then sends a join-request to the server, whose reply includes the current
BPEL model and the value of the operation counter at the time the server received
the join-request. Joining and leaving are handled atomically on the server. When
the client receives the reply, it constructs the BPEL model and then processes any
messages that have been lost between the join-request and reply. This ensures that
after the join process is complete, the client has a consistent document model.

6 Workflow Analysis for Collaborative Workflow Design

6.1 Evening out Intricacies of Collaboration

Though collaborative workflow design fosters the integration of domain-specific
and IT-specific knowledge within a workflow, it may increase the probability of
design flaws. While every collaborator brings in additional expertise, he also is a
source of unpredictable behavior. On the other hand, no single person has a view
of all changes taking place in the model. Thus, the structural quality of a work-
flow model can deteriorate in the course of collaborative workflow design. To even
out these effects, the team leader will repeatedly analyze the workflow model and
actuate refactorings (see Sections 3 and 4.6).

6.2 Workflow Metrics for BPEL

Workflow metrics are needed to support the decision-making sub-process of col-
laborative workflow design. The following aspects of BPEL affect what can be
measured:

(1) Web Services are treated as ”black boxes”, giving no insight into their func-
tionality or internal structure.

(2) BPEL lacks any concept of modules or objects.
(3) It does not include any notion of functions or procedures.

14

(4) It is a structured programming language, since control structures are block-
oriented and links between activities are limited to form directed acyclic graphs.

(5) In contrast to other workflow languages, control-flow and data-flow are de-
fined separately.

(6) BPEL enables parallel task execution.
(7) BPEL workflow models are inherently structured as a tree.

Item 7 indicates, that we can develop recursively defined metrics that indicate the
status of individual sub-workflows. Our choice of metrics is also affected by the
necessity to use only such information which is available at design time.

We will now present a set of metrics for measuring size, control-flow, data-flow
and parallelism of (sub-)workflows, some of which have already been presented
by other authors. Afterward we will evaluate the set and present its application to
identify code smells.

6.3 Size Metrics

Size is often measured using the Lines-Of-Code metric (LOC), which counts the
number of statements within a program source code. Since workflows are usually
designed with graphical editors, using the LOC metric does not make sense.

Cardoso et al. have proposed to count the number of basic activities (NOA) in a
workflow as an alternative to the Lines-Of-Code metric [32]. In contrast to the
LOC metric this leaves out any information about control structures. Thus, they
also propose to count the number of activities and control structures (NOAC) as
well.

In BPEL, the Assign activity may contain any number of copy statements. As an addi-
tional size metric, we propose counting the number of activities, control structures,
and copy statements (NOACC).

6.4 Measuring Control Flow

6.4.1 McCabe’s Cyclomatic Complexity

McCabe has proposed to measure the cyclomatic complexity of programs, i.e. the
number of linearly independent paths in the control flow graph [33]. McCabe’s Cy-
clomatic Complexity (MCC) is often used to evaluate the complexity of individual
modules or functions. According to [34], it ”measures the amount of decision logic
in a single software module”. The cyclomatic number of a graph g with n vertices,
e edges and p connected components is defined as:

15

V (g) = n − e + 2 · p

In structured programming languages, MCC can be computed by counting the num-
ber of binary decision points d, and settingMCC = d + 1 . We calculate the MCC
metric by counting the appearances of

• Receive with the attribute createInstance = "true"
• conditional branches, loops and events
• logical conjunctions and disjunctions in XPath-Expressions.

6.4.2 Control-Flow-Complexity

Cardoso has proposed a control flow complexity workflow metric (CFC), which he
has also adopted to BPEL [35][26][36]. The CFC metric is defined recursively for
every possible activity of a BPEL process.

The CFC definition does not mention the Scope activity.We propose to set the CFC
value of a Scope to the CFC value of its child activity, since scopes do not affect
the control flow.

The CFC value of the Flow activity is defined asCFC(F) = (n− l)!·∑a∈F CFC(a),
where n = |F |, l = |links(F)|. Thus, it is implicitly assumed, that n > l,
which is not necessarily the case. Hence, we propose to use the term CFC(F) =∑

a∈F CFC(a), iff. l >= n.

6.5 Measuring Parallelism

We have not found any hints on measuring workflow parallelism in the literature.
In BPEL, Tasks can be created via the structured activities Flow and ForEach. Both
differ significantly from each other in their level of abstraction.

The Flow activity defines static parallel execution of tasks in a directed acyclic
graph. The ForEach activity can be used to create a number of tasks based on a
numeric XPath expression. Hence, it is possible that the actual number of tasks
generated by a ForEach activity cannot be known at compile time. The maximum
number of concurrently running basic activities thus may depend on knowledge,
which is not available at build time. In the terminology of [37], both constructs
yield explicit parallelism. However, tasks are implicitly decomposed with ForEach
and explicitly decomposed using Flow.

Thus, ForEach parallelism cannot be measured, but is defined on a higher level
of abstraction than Flow parallelism. Hence, we propose a parallelism metric DOP

16

Activity DOP

process DOP (P) = DOP (a), a ∈ P

basic activities DOP (a) = 0

flow DOP (F) = ωF + max
∑

i∈{i1,...,iωF }DOP (ai)

sequence, if, pick DOP (A) = maxa∈ADOP (a)

loops, scope DOP (L) = DOP (a)
Table 1
Degree of parallelism.

(degree of parallelism), which gives an upper limit to the maximum number of con-
currently executed activities which have been created by explicit decomposition.

For any Flow activity F , parallel child tasks form a clique in the non-directed graph
induced by the relationship τ1 is parallel to τ2 (See Figure 4).

Fig. 4. Flow graph and parallelism graph.

Hence, we construct a parallelism graph Gp and then set

ωF := maxc∈C(G(F)) ω(c)

DOP (F) := ωF + max(A⊆F)∧(|A|= ωF)

∑

a∈A

DOP (a)

where C(G) yields the connected subgraphs of G, ω(c) is the size of the biggest
clique, and G(F) is the parallelism graph induced by F . The Flow graph shown in
Figure 4 has a DOP value of 3, if all activities are basic activities.

As the child activities of a Sequence are processed in a sequential order, the DOP
of a Sequence is the maximumDOP of its children. The same applies the treatment
of conditionals (If) and external events (Pick).

The algorithm for the DOP metric is presented in Table 1. In addition to DOP, we
propose counting the number of parallel ForEach activities.

17

6.6 Measuring Data Flow Intensity

There has been little work on measuring data flow in BPEL, although data flow
is a major aspect of workflows. We use a simple data flow intensity metric (DFI),
inspired by Liggesmeyer [38]:

DFI =
definitions + # references

decisions + 1

where # references is the number of variable references both in predicates and
computations, while # definitions is the number of assignments. In contrast to
Liggesmeyer, we set the divisor to # decisions + 1 instead of # decisions. Thus,
the metric is always defined, even if a workflow does not contain any decisions.

In BPEL we can identify # definitions as the number of copy statements and mes-
sage receiving activities and # references as the number of variable references in
different elements, while # decisions is the number of appearances of the activities
If, Pick, For, RepeatUntil andWhile. # decisions can be interpreted as an additional
control flow metric. Thus, instead of # decisions, we can also use MCC or CFC to
define variants of DFI.

To gain insight into the structure of the data flow, we need to augment DFI with
other measures. For instance, the ratio of assignments per invocation and the ratio
of copy operations per Assign, can indicate the complexity of integrating the given
Web Services. The ratio of data-manipulating activities (receive, invoke, assign) to
NOA can be used as a rough measure to assess the impact of data flow compared
to control flow.

6.7 Additional Structure Metrics

We can augment the set of metrics by adding several derived metrics and other
statistical values. These values are not necessarily meaningful by themselves, but
can help interpreting the given metrics. The metrics proposed in this section are
inspired by [38]. They should only be used in conjunction with complexity and
size metrics:

• In addition to the NOA and NOAC metrics, it makes sense to count the appear-
ance of any distinct element type within a workflow, so its impact on workflow
complexity can be assessed.

• Similar to the decision density metric MCC
LOC , we propose using the ratio of deci-

sions per activity/basic activity/ per invocation (MCC
NOAC ,

MCC
NOA ,

MCC
invoke).

• The number of simple predicates per decision and the number of simple and
compound predicates per decision can indicate how complex the decisions in a

18

workflow are.
• The ratio of arithmetic operators to the number of copy statements can yield the
average complexity of calculations within the workflow (# arithmetic operators

copy).

6.8 Evaluation

6.8.1 Weyuker’s Properties

For our purposes, the set of metrics that we propose both has to cover meaningful
aspects of BPEL workflows and provide sufficient granularity. Weyuker has pre-
sented a set of nine desirable properties of software metrics [39]. The Weyuker
properties assess the granularity of and the effects of program composition on soft-
ware metrics. While we have not found any meaningful metric in the literature that
satisfies all of the properties, if a set of metrics fulfills many or all of the properties,
this can be interpreted as an indication of its usefulness. For a metric µ, with P , Q,
R denoting programs, the Weyuker properties are defined as:

(1) ∃P∃Q : µ(P) ̸= µ(Q)
(2) ∀c > 0 : |{P, µ(P) = c}| ̸= ∞
(3) ∃P∃Q : P ̸= Q ∧ µ(P) = µ(Q)
(4) ∃P∃Q : P ≡ Q ∧ µ(P) ̸= µ(Q), where ≡ means that P and Q produce the

same output data for the same input.
(5) ∀P∀Q : µ(P) ≤ µ(P : Q)∧µ(Q) ≤ µ(P : Q), where :means concatenation.
(6) ∃P∃Q∃R : µ(P) = µ(Q) ∧ µ(P : R) ̸= µ(Q : R)

∃P∃Q∃R : µ(P) = µ(Q) ∧ µ(R : P) ̸= µ(R : Q)
(7) There exist programs P and Q such that Q is formed by a permutation of the

statements of P , and µ(p) ̸= µ(Q).
(8) If P is a renaming of Q, then µ(P) = µ(Q).
(9) ∃P∃Q : µ(P) + µ(Q) < µ(P : Q)

6.8.2 Weyuker Properties of the DOP Metric

Weyuker property 1 obviously holds for DOP. Property 2 does not hold, since an
arbitrary number of workflows with the same degree of parallelism but differing
sequential parts can be constructed. Property 3 holds for the same reason. Property
4 holds, since sequential and parallel invocations of web services with the same
arguments yield the same output. BPEL workflows can be concatenated using either
sequences or flows. For sequential concatenation µ(P : Q) = max {µ(P), µ(Q)},
while for parallel concatenation µ(P : Q) = µ(P) + µ(Q) + 2 . Thus, property 5
holds, while property 6 does not hold.

Property 7 holds, since exchanging activities between sequential sub-workflows
can lead to different DOP values.

19

Property 8 holds, since element names do not affect workflow structure or execu-
tion. Property 9 does not hold for sequential concatenation. However, it holds if
two workflows are concatenated in parallel, as this increases DOP by two.

6.8.3 Weyuker Properties of the DFI Metric

Property 1 holds for this metric, since sequential processes contain only one de-
cision but an arbitrary number of definitions and references. Property 2 does not
hold, since the number of decisions and the number of variable references can be
increased at the same time by using XPath custom functions. Property 3 holds, for
the XPath expressions $x ∗ $y and $x + $y contain the same number of references
but a different operator. Property 4 holds since any number of unused assignments
can be made.

Properties 5 and 9 do not hold, since the concatenation of two BPEL programs P
and Q yields the term

DFI(P : Q) =
def (P) + def (Q) + ref (P) + ref (Q)

dec(P) + dec(Q) + 1
.

Property 6 holds. Assume def (P) + ref (P) = 16 , dec(P) = 3 , DFI(P) = 4
def (Q) + ref (Q) = 8 , dec(Q) = 1 , DFI(Q) = 4 def (R) + ref (R) = 2 ,
dec(R) = 2 . ThenDFI(P) = DFI(Q), butDFI(P : R) = 18

6 = 3 andDFI(Q :
R) = 10

4 = 2 1
2 . Since DFI only depends on counts, property 7 does not hold, while

property 8 holds.

6.8.4 Summary

Table 2 gives an overview of the adherence of the presented metrics to the Weyuker
properties. It shows that all Weyuker properties are satisfied by at least one of the
metrics. The same arguments Weyuker has used for investigating the LOC metric,
hold for the size metrics NOA, NOAC and NOACC. MCC and DFI are defined
non-recursively. Both can be computed for any sub-workflow, though, since they
only depend on counts.

The other metrics presented in this paper are either derivations from the metrics
listed in Table 2 or are only meant to be used in conjunction with them. Thus we
do not evaluate their adherence to the Weyuker properties.

20

Workflow Metric Category recursive 1 2 3 4 5 6 7 8 9 remarks

NOA size yes + + + + + - - + - see text

NOAC size yes + + + + + - - + - and [39]

NOACC size yes + + + + + - - + -

MCC control flow no + - + + + - - + - [39]

CFC control flow yes + - + + + - + + + [35]

DFI data flow no + - + + - + - + - See Section 6.8.3.

DOP parallelism yes + - + + + - + + +/- See Section 6.8.2.
Table 2
Workflow metrics.

6.9 Applying the Metrics: BPEL Code Smells

The set of metrics proposed here enables investigating BPEL documents for code
smells that indicate a need of refactoring, which has been required in Section 4.6.
If the sub-workflows X and Y are expected to perform a similar functionality, the
code smell

MCC(X) >> MCC(Y)
∨ NOACC(X) >> NOACC(Y)
∨ CFC(X) >> CFC(Y)
∨ DFI(X) >> DFI(Y)
∨ # invoke(X) >> # invoke(Y)

(1)

indicates that either one implementation is incorrect or X is overly complex. This
can happen, if collaborators either differ in their idea about the functionality of the
workflow or in their level of experience.

The following smell indicates, that sub-workflow X is linear, but contains at least
one Flow element with join and target conditions and probably should be refactored
to a Sequence:

CFC(X) = NOA(X)
∧ MCC(X) > 1

(2)

When collaborators independently add assignments to a workflow, this can lead
to redundancy. The following smell indicates that sub-workflow X may contain
Assign activities that can be merged:

21

assign(X)
invoke(X)

> 1∧ # copy(X)
assign(X)

≈ 1 (3)

Here, sub-workflowX probably contains unnecessary nesting:

NOAC(X) > NOA(X) + 1
∧ CFC(X) ≈ NOA(X)

(4)

Unnecessary nesting can appear if designers work at different levels of a model
tree and activities on the upper layer are removed. Another source of unnecessary
nesting are inexperienced designers, who attempt to use the structured activity ”of
their choice”.

Scientific workflows usually exploit parallelism for efficiency. IfX contains compute-
intensive tasks, the following smell should lead to questioning a domain-expert
about potentially parallel execution of affected invocations:

DOP (X) = 0
∧ # parallel forEach(X) = 0
∧ # invoke(X) > 1

(5)

If two sub-workflowsX and Y are known to perform a similar functionality,

DOP (X) >> DOP (Y) (6)

is another bad smell for unused parallelism.

Because BPEL is not intended as a general programming language, a high density
of arithmetic operators or a very high data flow indicates a need of new custom
functions or web services:

arithmetic operators

copy
> c, c > 1 const. (7)

7 The HOBBES System for Collaborative Workflow Design

In this Section we show, how the principles we have presented in the previous sec-
tions have been implemented in our HOBBES workflow design system. A demo
version of HOBBES is available at
http://www-sr.informatik.uni-tuebingen.de/˜held/ria.htm.

22

Fig. 5. A workflow model in HOBBES

7.1 BPEL-Editing

We will briefly describe the general features of HOBBES first and then elaborate on
the collaborative features. The activities of the workflow are edited and arranged in
a graphical view (see Figure 5). User dialogs can be opened to edit the references
of the BPEL document to WSDL files, its Partner Links to Web Services, and other
properties, like global variables, fault and event handlers.

7.1.1 Activities

Figure 5 shows the main screen of HOBBES. It consists of an accordion panel on the
left (see Figure 5, ➌), which provides diverse editing options, a canvas ➋, which
shows the children of a structured activity, and a navigation tree ➍ on the right.
The editing canvas may differ according to the kind of structured activity currently
shown.

Conditional and arithmetic XPath-expressions are edited graphically. The expres-
sions are represented as trees, where nodes correspond to operators, functions, and
constant values.

23

7.1.2 Document Navigation

HOBBES directly reflects the tree structure of the BPEL document by showing only
the immediate child elements of a structured activity and their connections. Click-
ing on a flow or sequence activity reveals a preview of its child elements. Naviga-
tion through the document is simplified by a navigation tree widget, which is shown
right of the editor view. The structured activity currently being edited is highlighted.
HOBBES’s document navigation adheres to relaxed WYSIWIS (see Section 4.2).

7.2 Collaborative Features

7.2.1 Workflow Sessions and Phase Management

At the beginning of a team session, the team leader has sole access to the workflow
until she decides to share the session, after which other users may join. Clients are
notified of users joining and leaving the session and display a list of present users.
A chat feature enables communication without depending on external programs.

The current collaboration mode is shown as a screen icon (see Figure 5, ➊). The
team leader may at any time switch to a different mode, which is propagated to
all clients. When the system changes from the collaborative design mode to the
analysis and annotation mode, the team leader gains private access to workflow
metrics as well as the ability to annotate workflow elements, as described later.
During the analysis mode, other team members can view the changes the team
leader makes on the workflow. They are prevented from modifying the workflow
themselves, though. The team leader may persist the current state of the workflow
model at any time.

7.2.2 Collaborative Editing

We need to support synchronous collaboration (see Section 4.1) and also provide
means for temporarily locking workflow parts (see Section 4.3). Teammembers can
concurrently add, remove, drag, and connect activities. Such changes, which affect
visual elements of the workflow model, are instantly propagated to all clients.

If a user actuates a modification of the workflow a request is sent to the server. The
server then decides upon the validity of the operation and includes the necessary
instructions in its response message and informs the other clients via a broadcast.
The validity of an operation can be compromised if users concurrently actuate op-
erations (see Section 5).

For example, if user A actuates the creation of an Invoke activity as a child of a
Sequence activity, the server will only allow the modification if the Sequence still

24

exists within the model. If this is not the case because user B has deleted it, A’s
client will receive notification about the delete operation. It will then automatically
navigate to the root of the workflow and perform the delete operation.

However, users may lock parts of the workflow, thus preventing others from modi-
fying it. If user A wants to lock a structured activity, she will click its ”lock” button.
The lock operation is rejected if another user still holds a lock on the activity or any
of its descendants. Otherwise, the team leader is asked for allowing A to lock the
activity and its children. If the team leader currently is logged out, the lock opera-
tion succeeds anyway. If a user has sole access to a specific part of the workflow,
he cannot be disturbed by other user’s actions. This can be of great importance for
implementing details. Because all changes to the sub-workflow are still propagated
to other clients, all users stay aware of the progress of the design process. Locks
can be released by the lock owner herself or by the team leader.

7.2.3 Collaborative Activity Configuration

As has been discussed in Section 4.4, sometimes a user will need another user’s
advice, when configuring an activity. For this case, HOBBES includes a special
configuration ”co-edit” window (see Figure 6). User A may select an activity and
then choose the ”co-edit” feature. A window dialog will pop up for inviting another
user B to collaboratively edit the activity. B is informed of the invitation and may
accept or reject it. In case B accepts, on both user’s screens a window will appear,
which shows three activity configuration forms, two of which are disabled. In one
form the user can input a configuration and send it to his partner by pushing the
”propose” button. The two disabled forms contain the opposite user’s last proposal
and the current configuration of the activity. Both users can exchange and discuss
each other’s proposals until A either commits one of the two proposals or cancels
the operation.

Fig. 6. Collaboratively editing the properties of an activity.

25

7.2.4 Collaborative Document Navigation

With relaxed WYSIWIS, one user’s actions do not influence other users’ view on
the model. In a face-to-face collaboration, however, the first step in communicating
about a specific object is to show it to a partner. We have thus included a feature,
that enables such a communication, as discussed in Section 4.4. If user A clicks on
the ”co-navigate” button, she can invite another user B to navigate to her view of
the model. B is notified by a pop-up window and may accept or reject. If B accepts,
his client will navigate to the same structured activity.

7.2.5 Workflow Metrics

In the analysis phase of the workflow design process, the team leader may view
the current metrics of the workflow model (see Figure 5, ➎). The metrics window
also includes a tree view for those metrics which are defined recursively. The team
leader can also access a graph view that presents the development of the global
metrics of a workflow over time (see Figure 7).

Fig. 7. Metrics history graph.

7.2.6 Activity Annotations

During the analysis and annotation phase, the team leader may annotate activities
in the workflow to delegate tasks to team members (see Section 4.7). Annotations
automatically are also applied to the sub-tree induced by structured activity.

The team leader may annotate an activity α in the following ways:

(1) α is delegated to a set of team members, and locked for others.

26

Fig. 8. The architecture of HOBBES.

(2) α is delegated to a set of team members, but not locked for others.
(3) α is locked for everyone.

Annotation 1 can be used to both grant privileged access to a workflow part to an
expert and to instruct her about her responsibilities in the next collaborative phase.
Annotation 2 delegates responsibility to a team member but does not prevent col-
laboration, while 3 can especially be useful to prevent those parts of a workflow
model from further modification, which are considered complete. According to
their meaning to a specific user, the annotated activities are marked with colors.
Additionally the annotations may include a text which describes the expected task.

7.3 Implementation

7.3.1 The HOBBES Architecture

Figure 8 shows an overview of the architecture of HOBBES. Basically, it imple-
ments the Model-View-Controller Pattern [40] using the LCDS notification facili-
ties of Flex (see Section 2.3). Concurrent input is processed on the server, which
decides upon the validity of operations and subsequently notifies the clients of
changes of the BPEL model. Clients post HTTP requests to the server, whose re-
sponses are handled via callback methods. The full functionality of a workflow de-
sign session is exposed via a RESTful interface using POX/HTTP messages. Hence
alternative non-collaborative clients could be developed as well, e.g. for mashups.

7.3.2 The BPEL Object Model

The structure of the resulting BPEL document is reflected by a BPEL Object Model
(BOM). It mainly consist of an object tree, where every node represents a BPEL
activity and additional information concerning its visualization.

The full BOM is held on the server. The client side object model contains less
information and thus is more light-weight than the server side object model. This

27

reduces the amount of data that has to be sent when joining a session and also
simplifies the implementation of the client. Every relevant object (activities, links,
etc.) has an identifier which is identical in the client model as well as in the server
model.

Activity objects can be marked as unlocked or as locked by a specific user. The
server uses this information to decide about the validity of an operation, while the
client needs it for visualization purposes.

An activity object holds information relevant for compilation to BPEL (its config-
uration, its incoming and outgoing links, etc.), for internal management (e.g. its
parent activity) and for visualization purposes (e.g. its x- and y-position within a
flow). Structured activities also contain references to their children.

Client side activity representations contain some, but not all of the information
of the server side objects, e.g. the configuration information is only held on the
server. Server side activity representations contain a map of the properties of the
affected activity. For manipulating its configuration, the client fetches the current
configuration from the server and presents it in a configuration form.

7.3.3 The HOBBES Server

The controller decides upon the validity of a user request, manipulates the con-
cerned BOM and sends an answer message via HTTP reply, if necessary. If a
manipulation can affect the views of other clients (e.g. creating an activity), it is
propagated via an LCDS destination.

Operations which affect the BOM are processed in short critical regions within the
controller servlet. Every critical region first checks whether the resources necessary
to fulfill a request exist and whether the affected activities are available to the user.
This may not be the case if an activity has been locked. If this check and further
consistency checks as described in Section 5 succeed, the operations are performed
and then announced to the requester and all other clients. If a check does not suc-
ceed, the reaction of the system depends on the nature of the request. If e.g. two
users tried to delete the same activity at the same time, only one deletion request
will succeed but no special information about the failed deletion request needs to
be published. If on the other hand, a client requests to import a WSDL file which is
not available on the server any longer, the reply will contain an error message.

28

8 An Example of Workflow Design

8.1 Purpose

Our example is a pipe process, which converts gene sequence identifiers of the plant
Arabidopsis thaliana to gene sequences. Arabidopsis thaliana is widely used as a
model organism for plant science. We have chosen this particular example, since it
is a small and simple workflow, yet it represents a common case in bioinformatics.
We have developed this example with the aid of the BioMoby Web Service data-
base [41]. The example can be downloaded from
http://www-sr.informatik.uni-tuebingen.de/˜held/example.
htm.

The example workflow consists of the sequential execution of three tasks and takes
a list of AGI (Arabidopsis Genome Initiative) Locus Identifiers as input. The first
task invokes a service, which converts the AGI Locus identifiers to NASC (Notting-
ham Arabidopsis Stock Centre) code identifiers. The second task invokes another
service, that converts the NASC identifiers to EMBL (European Molecular Biol-
ogy Laboratory) accession numbers, while the third task uses yet another service
to yield actual DNA, RNA or amino acid sequences from the EMBL accession
numbers.

8.2 Original Design

The designers have attempted to implement the process in a semi-modular fashion,
where every service invocation is encapsulated within a Sequence activity, thus
representing every one of the tasks as a sub-workflow. Each of these sequences con-
sists of two phases. First assignments are made to configure the invocation, second
the actual invocation is actuated. The sequences are embedded in a Flow activity
and connected by links, because originally it had not been obvious, whether the
workflow would contain concurrent invocations. In the first phase, three designers
have worked in parallel to implement the workflowmodel, with each designer being
responsible for one sub-workflow. However, one of the designers is inexperienced
in workflow design and has committed several design flaws when implementing
sub-workflow 1. The workflow is visualized in Figure 9.

8.3 Analysis and Redesign

While the rationale behind the workflow at hand is a relatively clear cut design, a
look at some of the metrics reveals that it can be improved (see Table 3).

29

Fig. 9. A pipeline workflow.

Since the number of basic activities is equal to its control-flow-complexity and its
degree of parallelism is zero, the workflow is a pipe.

Moreover, the ratio of copy-elements per assign is one, while there are more than
one assign-activities per invocation. The metrics resemble code smell 4 from Sec-
tion 6.9. Since the workflow does not include any conditionals, some of the assign
activities can be merged.

While it is known that all three sub-workflows are responsible for a similar pur-
pose, i.e. the invocation of a service, there is an imbalance between the metrics
of the sub-workflows. As stated in Section 6.9 (code smell 2), this indicates that
the first sub-workflow is overly complex. Code smell 5 applies to sub-workflow 1,
so it contains unnecessary nesting. Closer inspection also reveals that it contains a
redundant Assign activity. Refactoring leads to the new pipe shown in Figure 10.

Fig. 10. The refined pipeline workflow.

8.4 Further Analysis and Redesign

Still, the MCC value is too high for a simple pipe, as it is the result of join and target
conditions (code smell 3). Hence, the workflow can still be improved by refactoring
all structured activities to a single sequence element. Size and complexity of the
new workflow have diminished substantially (see Figure 11).

Compiling the initial workflow yields about 180 LOC, while the refactored Work-
flow contains about 100 LOC. Since the workflow is comparatively small (contain-

30

Fig. 11. The final pipeline workflow

Workflow Metric old value su
b-
w
or
kfl
ow

1

su
b-
w
or
kfl
ow

2

su
b-
w
or
kfl
ow

3

re
fin
ed
de
si
gn

fin
al
de
si
gn

NOA 12 5 2 3 9 9

NOAC 16 6 2 3 13 10

NOACC 29 25 22

of Structured Ac-
tivities

4 4 1

of decisions 0 0 0 0 0 0
assign
invoke 4 1.33 1.33
copy

assign 1 3 3

MCC 17 8 1 1 6 1

CFC 12 5 2 3 9 9

DOP 0 0 0 0 0 0

DFI 36 10 10 12 34 34
Table 3
Workflow metrics.
ing only three invocations), we can see that larger workflows absolutely require
metrics support for effective steering of collaborative design.

9 Related Work

9.1 Collaborative Development Software

Since the 1990s several real-time collaborative text editors have been developed. A
popular example is Subetha-Edit, which uses Apple’s Bonjour protocol to automat-
ically find peers in local area networks but also can be used on the Internet [42].
Groups of users can synchronously edit the same text document. Whenever a group
member types or deletes a character, this event is immediately reproduced on his

31

co-workers’ editors.

CoWord and CoPowerpoint are examples of collaborative extensions for office soft-
ware [43], where operational transformation is being added by intercepting the
user’s local interactions (see Section 5.2). Collaborative editors like Subetha-Edit
or CoWord prove the concept of synchronous collaborative editing. They cannot be
easily embedded into web environments, though.

Google Docs is a web-based collaborative office suite including a word processor, a
spreadsheet and a presentation software, which supports real-time collaboration by
HTTP polling [44]. Buzzword is a web-based word processor which allows users
to share a document [45]. Like our collaborative workflow design tool HOBBES it
is implemented in the Flex framework. Compared to other web-based word proces-
sors it more strongly resembles desktop applications and clearly shows the value of
browser extensions for implementing advanced user interfaces on the web.

9.2 Workflows in Science and Business

A plethora of industrial workflow design tools exists. These either employ a spe-
cific modeling language (e.g. BPMN, UML Activity Diagrams, EPC) or reflect
the execution language (e.g. BPEL). One typical example of an industrial strength
BPEL editor is the ActiveBPEL Designer [46], which is based upon Eclipse. It in-
herits many advantages of the Eclipse platform, like project management features
and different perspectives. Its graphical representation of the workflow is directly
derived from the structure of BPEL. All activities are presented on one plane. Ac-
tiveBPEL Designer shows structured activities as collapsible containers and allows
to zoom in and out of the workflow graph. Unlike the Oracle JDeveloper IDE [47]
it does not allow to ”drill into” structured activities, which means showing only
the workflow subgraph defined by a structured activity. Apart from version control
system integration, ActiveBPEL does not support collaborative development.

The Eclipse-based BPEL-Editor Sedna has been used for grid computing in com-
putational chemistry [1][4]. Sedna does not provide any collaborative features. All
activities are presented on one plane and structured activities are represented by
non-collapsible containers. Sedna lacks further means to represent more complex
BPEL documents.

Friese et al. have presented an Eclipse-based collaborative BPEL Editor [8], which
supports a synchronous editing process based on the Eclipse Communication Frame-
work, where the collaboration initiator acts as a coordinator. They motivate collabo-
rative workflow design by an example, where a casting engineer, a numerical simu-
lation expert, and a grid expert cooperate on the design of an engineering workflow
in the domain of metal casting. They argue, that especially small companies will
gain from collaborative workflow development, since such companies will often

32

have to hire external experts for implementing aspects of a workflow. Users can
join a session and create, delete, connect and move basic activities concurrently.
They neither address the issue of collaboratively editing complex workflows con-
sisting of several structured activities nor how participants should negotiate the
configuration of a specific activity.

The P-GRADE bioinformatics portal provides a Java-based workflow editor with
collaborative features [48]. Out of the necessity to connect Grid jobs of different
users, P-GRADE provides the ability to lock, locally edit and submit parts of a
workflow. P-GRADE neither supports synchronous collaboration nor a structured
collaborative design process steered by workflow metrics. The P-GRADE Editor
uses Java Web Start deployment, which can be seen as a distant relative of RIA
technology but prevents embedding the application in a web site. It uses a propri-
etary workflow language, limited to the design of Directed Acyclic Graphs.

The ESCOGITARE bioinformatics portal contains a workflow design tool, which
compiles BPEL processes and can be accessed online [49]. ESCOGITARE pro-
vides a simplified editor, which hides BPEL features from the user and only presents
a palette of available web services. Although it is integrated in a web site it does
not support collaborative design.

The BioWMS workflow management system contains a web-based workflow edi-
tor [50]. Workflows are presented as static HTML pages with embedded graphics.
Changes to a workflow lead to reloading the page. BioWMS neither supports BPEL
nor does it include any collaborative features.

The LEAD portal (Linked Environments for Atmospheric Discovery) gives its users
access to the TeraGrid infrastructure for research on meteorological phenomena
[51]. It provides a simple, data-flow oriented pipeline editor using Java Web Start.
The pipeline workflows can be compiled to Java Python (Jython) and be executed
via the portal, while support for BPEL and more complex graphs is planned.

The A-WARE Grid portal includes a workflow designer based on the Business
Process Modeling Notation (BPMN) [52][53]. The resulting BPMN-models are
compiled to BPEL. It is implemented as a Java-Applet but does not provide any
collaborative features.

Yahoo Pipes [54] is an AJAX-based Mashup-editor which resembles a dataflow-
oriented workflow editor. Users may connect web forms and simple REST-style
Web Services which provide String input and output to DAGs with a set of input
parameters and one output data sink. The Pipes notation supports iterating single
activities over input collections. Different string operators can be embedded di-
rectly into a pipe.

Table 4 shows an overview of the presented workflow design tools compared to
HOBBES. We have included Yahoo Pipes in the table, because it is a sophisticated

33

example of mashup technology, which shows strong similarities to workflow edi-
tors. The character ”*” signifies the use of Java Web Start.

B
PE
L
su
pp
or
t

w
eb
in
te
gr
at
io
n

sy
nc
hr
on
ou
s

co
lla
bo
ra
tio
n

lo
ck
in
g

w
or
kfl
ow
-p
ar
ts

co
lla
bo
ra
tiv
e

do
cu
m
en
t

na
vi
ga
tio
n

hi
er
ar
ch
ic
al

pr
es
en
ta
tio
n

gr
ap
hi
ca
l

X
Pa
th
ed
ito
r

W
or
kfl
ow
M
et
ric
s

co
lla
bo
ra
tio
n
ph
as
es

ta
sk
de
le
ga
tio
n

ActiveBPEL 2.0 no no no no no 11 no no no no

Designer

Sedna 1.1 no no no no no no no no no

Friese et al. 2.0 no yes no no no no no no no

P-GRADE no no∗ no yes no n/a n/a no no no

ESCOGITARE 1.1 yes no no no no no no no no

BioWMS no yes no no no no n/a no no no

Yahoo Pipes no yes no no no no n/a no no no

LEAD planned no∗ no no no no no no no no

A-WARE 2.0 yes no no no no no no no no

HOBBES 2.0 yes yes yes yes yes yes yes yes yes
Table 4
Workflow design tools.

As the table shows, in contrast to the other systems presented here, HOBBES en-
ables the full integration of collaborative workflow design in Web 2.0-based Prob-
lem Solving Environments.

10 Conclusion

We have presented a novel method of workflow design, which supports synchro-
nous collaboration, metric-based workflow analysis and annotation-based coordi-
nation of collaborators. The possibility to work synchronously on a workflow, while
structuring the design process itself encourages cooperation between software en-
gineers and domain experts. Workflow metrics help the team leader in decision
making, identifying design flaws in sub-workflows and estimating the maturity of
a workflow project. They also simplify communication between the team leader
and other team members because they enable reasoning about workflow models in
quantitative terms.

34

While our article has focused on collaborative BPEL development, our findings can
be applied to other workflow systems as well. As the Web is already used as a plat-
form for scientific Problem Solving Environments and for workflow enactment, the
time has come to broadly support web-based collaborative workflow development.

11 Acknowledgments

Markus Held is supported by a grant from the Ministry of Science, Research and
the Arts of Baden-Württemberg (Az: 23-7532.24-4-18/1).

References

[1] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, Workflows for e-Science:
Scientific Workflows for Grids, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[2] Web Services Business Process Execution Language Version 2.0, http://docs.
oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf, last accessed 24/10/2007. (April 2007).

[3] J. Yu, R. Buyya, A Taxonomy of WorkflowManagement Systems for Grid Computing,
Journal of Grid Computing 3 (3-4) (2005) 171–200.

[4] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, S. Price, Grid Service
Orchestration Using the Business Process Execution Language (BPEL), Journal of
Grid Computing 3 (3-4) (2005) 283–304.

[5] O. Ezenwoye, S. M. Sadjadi, A. Carey, M. Robinson, Grid Service Composition in
BPEL for Scientific Applications, in: Proceedings of the International Conference
on Grid computing, high-performance and Distributed Applications (GADA’07),
Vilamoura, Algarve, Portugal, 2007.

[6] J. D. Herbsleb, Global Software Engineering: The Future of Socio-technical
Coordination, in: FOSE ’07: 2007 Future of Software Engineering, 2007, pp. 188–
198.

[7] J. Whitehead, Collaboration in Software Engineering: A Roadmap, in: FOSE ’07:
2007 Future of Software Engineering, 2007, pp. 214–225.

[8] T. Friese, M. Smith, B. Freisleben, J. Reichwald, T. Barth, M. Grauer, Collaborative
Grid Process Creation Support in an Engineering Domain, in: Proceedings of High
Performance Computing - HiPC 2006, 13th International Conference, 2006.

[9] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, International Journal of High Performance Computer
Applications 15 (3) (2001) 200–222.

35

[10] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, J. Myers, Examining the Challenges of Scientific Workflows,
IEEE Computer 40 (12) (2007) 24–32.

[11] L. Osterweil, Software Processes Are Software Too, in: ICSE ’87: Proceedings of the
9th international conference on Software Engineering, IEEE Computer Society Press,
Los Alamitos, CA, USA, 1987, pp. 2–13.

[12] M. Held, W. Blochinger, Collaborative BPEL Design in a Rich Internet Application,
in: CCGRID ’08: Proceedings of the 8th International Symposium on Cluster
Computing and the Grid, IEEE Computer Society Press, Lyon, France, 19-22 May
2008., 2008, pp. 202–209.

[13] XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath, last accessed 18/07/2008. (November 1999).

[14] I. Vanderfeesten, J. Cardoso, J. Mendling, H. Reijers, W. van der Aalst, BPM and
Workflow Handbook 2007, Future Strategies Inc., Lighthouse Point, Florida, USA,
2007, Ch. Quality Metrics for Business Process Models, pp. 179–190.

[15] T. O’Reilly, What Is Web 2.0 - Design Patterns and Business Models for the Next
Generation of Software,
http://www.oreillynet.com/lpt/a/6228, last accessed 11/06/2008.

[16] M. Jazayeri, Some trends in web application development, in: FOSE ’07: 2007 Future
of Software Engineering, IEEE Computer Society, Washington, DC, USA, 2007, pp.
199–213.

[17] G. C. Fox, R. Guha, D. F. McMullen, A. F. Mustacoglu, M. E. Pierce, A. E. Topcu,
D. J. Wild, Web 2.0 for Grids and e-Science, in: INGRID 2007 - Instrumenting the
Grid 2nd International Workshop on Distributed Cooperative Laboratories, 2007.

[18] R. T. Fielding, R. N. Taylor, Principled design of the modern web architecture, ACM
Transactions on Internet Technology 2 (2) (2002) 115–150.

[19] J. J. Garrett, Ajax: A New Approach to Web Applications, http://www.
adaptivepath.com/ideas/essays/
archives/000385.php, last accessed 11/06/2008.

[20] Adobe Flex, http://www.adobe.com/flex/, last accessed 21/07/2008.

[21] P. E. Weiseth, B. E. Munkvold, B. Tvedte, S. Larsen, The wheel of collaboration tools:
a typology for analysis within a holistic framework, in: CSCW ’06: Proceedings of the
2006 20th Anniversary Conference on Computer Supported Cooperative Work, ACM,
New York, NY, USA, 2006, pp. 239–248.

[22] A.-W. Scheer, ARIS Business Process Modeling, Springer Verlag, 1999.

[23] M. Stefik, D. G. Bobrow, S. Lanning, D. Tatar, G. Foster, WYSIWIS revised: Early
Experiences with Multi-User Interfaces, in: CSCW ’86: Proceedings of the 1986 ACM
Conference on Computer-Supported Cooperative Work, 1986, pp. 276–290.

36

[24] J. Begole, M. B. Rosson, C. A. Shaffer, Flexible Collaboration Transparency:
Supporting Worker Independence in Replicated Application-sharing Systems, ACM
Transactions on Computer-Human Interaction 6 (2) (1999) 95–132.

[25] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[26] J. Cardoso, Evaluating the Process Control-Flow Complexity Measure, in: 2005 IEEE
International Conference on Web Services (ICWS 2005), IEEE Computer Society,
2005, pp. 803–804.

[27] F. P. Brooks Jr., The Mythical Man-Month: Essays on Software Engineering, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1978.

[28] C. Sun, X. Jia, Y. Zhang, Y. Yang, D. Chen, Achieving Convergence, Causality
Preservation, and Intention Preservation in Real-time Cooperative Editing Systems,
ACM Transactions on Computer-Human Interactions 5 (1) (1998) 63–108.

[29] J. Vogel, Consistency Algorithms and Protocols for Distributed Interactive
Applications, 2004, dissertation. http://madoc.bib.uni-mannheim.de/
madoc/volltexte/
2004/671/, last accessed: 21/07/2008.

[30] C. A. Ellis, S. J. Gibbs, Concurrency Control in Groupware Systems, SIGMOD
Record 18 (2) (1989) 399–407.

[31] C. Sun, C. Ellis, Operational Transformation in Real-time Group Editors: Issues,
Algorithms, and Achievements, in: CSCW ’98: Proceedings of the 1998 ACM
Conference on Computer Supported Cooperative Work, 1998, pp. 59–68.

[32] J. Cardoso, J. Mendling, G. Neumann, H. Reijers, A Discourse on Complexity of
Process Models, in: J. Eder, S. Dustdar (Eds.), BPI06 - Second International Workshop
on Business Process Intelligence, In conjunction with BPM 2006, LNCS 4103,
Springer-Verlag, Berlin, Heidelberg, 2006, p. pp.115126.

[33] T. McCabe, A Complexity Measure, IEEE Transactions on Software Engineering 2 (1)
(1976) 308–320.

[34] A. H.Watson, T. J. McCabe, NIST Special Publication 500-235: Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Metric, Tech. rep., National
Institute of Standards and Technology (1996).

[35] J. Cardoso, Control-flow Complexity Measurement of Processes and Weyuker’s
Properties, in: Ardil, Cemal (Eds.), 6th International Conference on Enformatika,
Vol. 8, International Academy of Sciences, pp. 213–218.

[36] J. Cardoso, Complexity Analysis of BPEL Web Processes, Software Process:
Improvement and Practice 12 (2) (2007) 35–49.

[37] D. B. Skillicorn, D. Talia, Models and languages for parallel computation, ACM
Computing Surveys 30 (2) (1998) 123–169.

37

[38] P. Liggesmeyer, A set of complexity metrics for guiding the software test process,
Software Quality Journal 4 (4) (1995) 257–273.

[39] E. J. Weyuker, Evaluating Software Complexity Measures, IEEE Trans. Softw. Eng.
14 (9) (1988) 1357–1365.

[40] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-Wesley
Professional, 1995.

[41] M. D. Wilkinson, M. Links, BioMOBY: An Open Source Biological Web Services
Proposal, Briefings in Bioinformatics 3 (4) (2002) 331–341.

[42] SubEtha-Edit, http://www.codingmonkeys.de/, last accessed 24/10/2007.

[43] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, W. Cai, Transparent Adaptation of Single-
User Applications for Multi-User Real-time Collaboration, ACM Transactions on
Computer-Human Interactions 13 (4) (2006) 531–582.

[44] Google Docs, http://docs.google.com/, last accessed 24/10/2007.

[45] Buzzword, http://preview.getbuzzword.com/, last accessed 24/10/2007.

[46] ActiveBPEL Designer, http://www.active-endpoints.com/
active-bpel-designer.htm, last accessed 24/10/2007.

[47] Oracle JDeveloper,
http://www.oracle.com/technology/products/jdev, last accessed
24/10/2007.

[48] G. Sipos, P. Kacsuk, Multi-grid, Multi-user Workflows in the P-GRADE Portal,
Journal of Grid Computing 3 (3-4) (2005) 221–238.

[49] D. Laforenza, R. Lombardo, M. Scarpellini, M. Serrano, F. Silvestri, P. Faccioli,
Biological Experiments on the Grid: A Novel Workflow Management Platform,
in: CBMS ’07: Proceedings of the Twentieth IEEE International Symposium on
Computer-Based Medical Systems, 2007, pp. 489–494.

[50] E. Bartocci, F. Corradini, E. Merelli, L. Scortichini, BioWMS: a web-based Workflow
Management System for bioinformatics., BMC Bioinformatics 8 Suppl 1.
URL http://dx.doi.org/10.1186/1471-2105-8-S1-S2

[51] M. Christie, S. Marru, The LEAD Portal: a TeraGrid gateway and application service
architecture, Concurrency and Computation : Practice and Experience 19 (6) (2007)
767–781.

[52] A-WARE Project, http://www.a-ware-project.eu, last accessed
24/06/2008.

[53] Business Process Modeling Notation, http://www.bpmn.org/, last accessed
21/07/2008. (February 2006).

[54] Yahoo Pipes, http://pipes.yahoo.com, last accessed 03/04/2008.

38

