Hochschule Reutlingen
Reutlingen University

g8

Parallel and Distributed Computing Group
Department of Computer Science
Reutlingen University

COHESION - A microkernel based desktop grid
platform for irregular task-parallel applications

Sven Schulz, Wolfgang Blochinger,
Markus Held and Clemens Dangelmayr

(Accepted Peer-Reviewed Manuscript Version)

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

The formal publication is available at:
https://doi.org/10.1016/j.future.2007.06.005

BiBTRX

@article{Schulz2008,
author = "Sven Schulz and Wolfgang Blochinger and Markus Held
and Clemens Dangelmayr",
title = "COHESION — A microkernel based Desktop Grid platform for irregular
task-parallel applications”,

journal = "Future Generation Computer Systems",
volume = "24",

number = "5",

pages = "354--370",

year = "2008",

issn = "0167-739X",

doi "https://doi.org/10.1016/j.future.2007.06.005",

url "http://www.sciencedirect.com/science/article/pii/S0167739X0700101X",


http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2007.06.005

* Manuscript

COHESION — A Microkernel Based Desktop
Grid Platform for Irregular Task-Parallel
Applications

Sven Schulz ' Wolfgang Blochinger * Markus Held 2
Clemens Dangelmayr

University of Tiubingen, Symbolic Computation Group
Sand 14, D-72076 Tiubingen, Germany

Abstract

We present COHESION, a novel approach to Desktop Grid Computing. A major
design goal of COHESION is to enable advanced parallel programming models and
application specific frameworks. We focus on methods for irregularly structured
task-parallel problems, which require fully dynamic problem decomposition. Co-
HESION overcomes limitations of classical Desktop Grid platforms by employing
Peer-To-Peer principles and a flexible system architecture based on a microkernel
approach. Arbitrary modules can be dynamically loaded to replace default func-
tionality, resulting in a platform that can easily adapt to application-specific re-
quirements. We discuss two representative example applications and report on the
results of performance experiments that especially consider the high volatility of
resources prevailing in a Desktop Grid.

Key words: Desktop Grids, Grid Computing, Software Architecture,
Peer—To—Peer Systems

* Corresponding author.

Email address: blochinger@informatik.uni-tuebingen.de (Wolfgang
Blochinger).
1 Supported by Deutsche Forschungsgemeinschaft (DFG) under grant BL 941/1-1
2 Supported by a grant from the Ministry of Science, Research and the Arts of
Baden-Wiirttemberg (Az: 23-7532.24-4-18/1)

Preprint submitted to Elsevier 13 June 2007



1 Introduction

Grid Computing is increasingly recognized as a major building block of the
eScience vision. It provides researchers uncomplicated access to resources be-
yond the boundary of a single institution. Most importantly, Grid Computing
can deliver unprecedented computing power.

In this paper we deal with Peer-to-Peer (P2P) Desktop Grid Computing. This
discipline of Grid Computing integrates methods from high performance com-
puting with state-of-the-art concepts from the realm of distributed systems.
Desktop Grid systems harness underutilized resources of end-user computers
for tackling computationally hard problems. This approach to Grid Comput-
ing is gaining momentum, since it is able to deliver considerable computing
power at virtually no extra cost. Small scale installations, e.g. comprising the
workstations of a department, and also large scale, Internet-wide approaches
(also known as Global Computing) have been successfully implemented.

However, Desktop Grids differ significantly from traditional parallel systems.
Particularly, resources exhibit a high degree of volatility and heterogeneity:
Depending on the usage patterns of the participating desktop computers, re-
sources with considerably differing capabilities join and leave the grid in an
unpredictable manner. Delivering sustained computing power in such environ-
ments poses enormous challenges to system and application designers.

As a consequence, Desktop Grid applications are most often based on triv-
ial parallelism. The problem at hand is decomposed into independent sub-
problems, which can be farmed out for computation without further commu-
nication among the sub-problems. Extending the scope of the Desktop Grid
approach towards more non-trivial parallel applications involves aspects on
all levels of parallel system design. In this paper, we present our P2P Desk-
top Grid platform COHESION (available from [1]). Our research aims at laying
the system-level foundations for more tightly coupled parallel computations re-
quiring complex interaction patterns among the participating nodes. The main
target domain of COHESION are irregular task-parallel applications. Typically,
these applications employ fully dynamic problem decomposition based on a
distributed task-pool execution model. In particular, we make the following
contributions:

e We demonstrate how advanced P2P principles and techniques can be as-
sembled to create a comprehensive collection of core functionality required
for parallel computing.

o We show that a P2P approach to Desktop Grid computing also has a funda-
mental impact on the architecture of the system. We present an appropriate
solution based on an industrial strength microkernel technology.



e We explain how sophisticated parallel programming models and application
specific parallel frameworks can be realized on top of the abstractions and
primitives provided by COHESION.

The remainder of our paper is organized as follows: In Section 2 we give an
overview of related work. Section 3 discusses a P2P based execution model for
irregular task-parallel applications. In Section 4 we identify requirements for
P2P based Desktop Grid Computing. Section 5 gives a comprehensive descrip-
tion of the design, architecture, and implementation of COHESION. In Section
6 we present example applications and discuss the results of performance mea-
surements.

2 Related Work

Grid computing has been a highly active area of research in the last decade.
The textbook [2] provides a comprehensive overview of all major topics.

One main goal of Grid research has been enabling virtual organizations [3].
Within a virtual organization, organizationally-owned resources (possibly of
considerable value) can be shared among autonomous and often geographically
dispersed institutions without sacrificing local authority.

Desktop Grid computing [4] aims specifically at harnessing unused resources
from non-dedicated end-user machines. This (largely orthogonal) discipline
of Grid research has been motivated by today’s pervasiveness of informa-
tion technology and the resulting plethora of exploitable computing power
[5]. According to the scale and the relationship among resource providers and
resource consumers we can distinguish different approaches to Desktop Grid
Computing. Computation exchange platforms (e.g. CompuP2P [9]) establish
a symmetric relationship between resource providers and resource consumers
by creating virtual markets for trading resources. A more asymmetric relation-
ship between these parties is typical for volunteer (global) computing platforms
(e.g. BOINC [10]) and for Enterprise Desktop Grids (e.g. Entropia [11]).

Both approaches to Grid Computing ultimately pursue the same goal, ag-
gregating resources beyond local administrative domains. However, they face
different requirements and constraints, e.g. target communities (limited trust
vs. no trust) or nature of resources (high-end vs. end-user) [6].

System architectures for building virtual organizations (e.g. Globus toolkit
[7]) must specifically deal with interoperability issues, like standardization of
protocols and interfaces. It turned out, that these requirements can be effec-
tively met by leveraging industry standards from the realm of web services



[8]. However, this approach results in rather complex systems and imposes
high organizational requirements, e.g. highly qualified personnel. In contrast,
architectures for constructing Desktop Grids must specifically reflect the high
degree of resource volatility. Also, only little administrative overhead is accept-
able, since typically no additional personnel is available for operating Desktop
Grid installations. As a consequence, more lightweight and modular system
architectures become mandatory, since they reduce software and runtime com-
plexity and can also adapt to the prevailing dynamism.

Next, we classify several Desktop Grid platforms according to their basic ar-
chitectural approach and subsequently, we elaborate on state-of-the-art tech-
niques for building modular distributed software.

2.1 Client/Server Desktop Grid Platforms

Client /server or multi-tier Desktop Grid platforms employ a proven and well
understood operational model. Thus, they have reached a considerable degree
of maturity and stability and are particularly suited for commercial or mission
critical applications. However, due to their centralized nature, programming
models requiring complex interaction patterns among the participating nodes
cannot be realized efficiently. Typically, such platforms exclusively support the
bag of tasks or master/worker parallel programming model. As a consequence,
client /server platforms are mainly suited for applications, which are based on
trivial parallelism or for plain high throughput computing.

Well-known examples of this class of Desktop Grid platforms are BOINC and
Entropia. Basically, these platforms are very similar. Differences can be ob-
served concerning the client-side security model (signed code vs. native sand-
boxing), support of heterogeneous environments, and functionality for dynam-
ically integrating applications.

In [12] a prototypical software stack for large scale distributed systems (LSDS)
is presented, that specifically addresses resource volatility and respective ap-
plication programming models. XtremWeb is a Desktop Grid platform which
implements a subset of this architecture by a three-tier approach. It employs
a coordinator for connecting clients and workers which is (currently) imple-
mented in a centralized way.

2.2 P2P Desktop Grid Platforms

In recent years, several (experimental) platforms for high performance com-
puting based on P2P principles have been described in the literature. Subse-



quently, we discuss some prominent representatives.

The JNGI [13] system is mainly targeted towards coarse-grained, embarrass-
ingly parallel applications. It supports the master /worker programming model,
thus being very similar to client/server platforms at the programming model
level. However, the JNGI architecture focuses on extreme scalability and reli-
ability. It pursues a self-organizing approach, taking advantage of the capabil-
ities of the JXTA P2P platform. JNGI’s architecture is based on several peer
groups with distinct responsibilities, i.e. worker, task, and repository groups.

The primary goal of the Personal Power Plant (P3) Desktop Grid system [14]
is to enable mutual and equal transfer of computing power between participat-
ing individuals. P3 provides master/worker as well as message passing based
programming models. It is implemented on top of the JXTA P2P protocol
suite.

While JNGI and P3 are built on unstructured P2P overlay technology, Com-
puP2P [9] is an example of a Desktop Grid platform, which relies on a struc-
tured overlay network based on distributed hash tables (Chord [15]). It creates
dynamic markets of network accessible computing resources. For enabling re-
source trading, ideas from game theory and microeconomics are adopted.

COHESION belongs to the class of P2P Desktop Grid platforms. Since it em-
ploys unstructured network overlay technologies, it is more closely related to
systems like JNGI and P3. While other P2P based approaches focus mainly
on achieving highest scalability, our research is primarily targeted towards re-
alizing complex parallel programming models on Desktop Grids by leveraging
P2P principles.

2.8  Modular Distributed Systems

H20 [16] is a distributed component framework that aims at removing the
static binding between service deployer and resource provider. Although there
are some similarities between H20 and COHESION, there are also substantial
differences. Both provide a framework for dynamically composing components
or modules into applications. However, while H20 implements a proprietary
approach, where components have to be assembled manually, COHESION lever-
ages a mature industrial-strength module system with advanced features like
automatic component dependency resolution. A very fundamental difference
is, that COHESION is tailored to especially meet the requirements of P2P
Desktop Grid applications. It simplifies application development by providing
a comprehensive set of useful abstractions (e.g. groups, endpoints and tasks)
and higher level distributed services. In contrast, H20 focuses on support-
ing componentization and flexible provider-centric module provisioning, while



the implementation of higher-level services in H20 is completely up to the
(application or third-party component) developer.

H20 components interact over RMIX [19], a programming model based on a
generalization of Java RMI. It provides additional method invocation seman-
tics (i.e. asynchronous and one-way invocations) and allows for transparently
using different transport technologies. In contrast, COHESION strives to sup-
port a multitude of programming models (with RMI(X) potentially being one
of them) to support the diverse requirements of different applications. The con-
crete implementation of communication primitives (i.e. sending and receiving
messages) is left to interchangeable substrates. Thus, every implemented pro-
gramming model can be executed on every available substrate, creating a wide
spectrum of possible design alternatives.

The Java version of the Harness Distributed Virtual Machine (DVM) [17] envi-
ronment is based on H20. It aims at providing a highly available, component-
based, resource sharing platform for distributed metacomputing. High-availability
in Harness is achieved through state sharing between kernels in virtual syn-
chrony. However, this approach limits scalability and renders the DVM ap-
proach inappropriate for large P2P Desktop Grid systems. A refinement [18]
of the Harness architecture allows for components to exist outside of the DVM
context, resulting in better scalability. However, advanced features provided by
the DVM, like failure recovery and event notification, are no longer available.

3 A P2P Based Execution Model for Irregular Task-Parallel Com-
putations

COHESION strives for pushing the limits of the Desktop Grid approach by en-
abling advanced parallel programming models. In this paper, we focus on task-
parallel programming models targeted towards Irreqularly Structured Problems
(ISPs). ISPs are parallel applications, whose computation and interaction pat-
terns are input-dependent, unstructured and evolving during the computation
[20]. Prominent examples are discrete optimization and constraint satisfaction
problems. In this section, we explain why the client/server model supported
by many existing Desktop Grid Computing platforms is too restricted to ef-
ficiently parallelize ISPs and discuss how the arising problems can be tackled
by introducing a P2P based execution model (cf. Figure 1).

Problem decomposition plays a central role in the design of parallel applica-
tions. It determines how the problem is to be divided into (sub-)tasks, which
can be executed in parallel. Basically, problem decomposition can be carried
out statically (i.e. tasks are identified and defined prior to program execution)
or in a dynamic manner, where tasks are generated (on demand) at runtime.



Problem
Decomposition

Execution
Model

Parallelism

Data Parallel

Centralized

Task Parallel Task Pool

Dynamic

Distributed
Task Pool

Fig. 1. Parallelization of task-parallel ISPs

In the latter case, tasks are explicit objects within the parallel program, which
can be dynamically assigned to idle processors for execution. For ISPs a static
approach to decomposition can result in significant processor idling, since a
task’s computational complexity typically can not be derived from program
input. Thus, dynamic problem decomposition becomes mandatory.

Generally, dynamic problem decomposition requires explicit load balancing,
i.e. tasks have to be assigned to processors at runtime. The task pool model
decouples problem decomposition and load balancing by a data structure hold-
ing tasks that result from dynamic decomposition operations. It can either be
organized in a centralized or in a distributed manner. In a centralized ap-
proach, a master node maintains a global task pool from which idle processors
can fetch new tasks. To be able to serve task requests in a timely fashion, the
master prompts active nodes to perform problem decomposition, whenever the
size of the task pool falls below a given threshold. A drawback of this approach
is, that the cost of maintaining an accurate view of all nodes’ state becomes a
sequential bottleneck for large numbers of nodes. Furthermore, tasks resulting
from decomposition operations must first be transfered to the master node
before they can be assigned to a worker [21]. Together, these shortcomings
can seriously limit the overall efficiency.

In the distributed task pool model, a task pool is located on every node. Thus,
problem decomposition and load balancing are accomplished autonomously by
each node. Technically, the client/server model of a centralized task pool is
replaced by a P2P model in which every node can be the source and sink of
tasks. Load balancing can be implemented as sender (work pushing) or re-
ceiver initiated (work stealing) task transfers between local task queues (or
combinations thereof). Because there is no global knowledge, distributed load
balancing tends to be more scalable but less efficient than centralized ap-
proaches. However, since tasks resulting from local decomposition operations
are transferred directly between nodes (and are not relayed by a master node),
losses in efficiency are partially leveled out.



4 Peer-to-Peer Desktop Grid Computing

Although the term P2P is used differently in different contexts, there are sev-
eral generic ideas and mechanisms such systems have in common. Typically,
this includes a decentralized, self-organizing architecture, where autonomous
and equal systems interact without any permanent central instance. In gen-
eral, there are temporal but no fixed hierarchical client/server relationships
between peers, that are tied to a specific purpose. Thus, P2P systems are often
of ad-hoc nature and consequently exhibit an unpredictable and fluctuating
overall performance. A comprehensive overview covering all facets of the topic
is presented in [22]. For the purpose of our analysis, we confine ourselves to
issues that we expect to have impact on parallel efficiency.

4.1 Challenges in P2P Desktop Grid Computing

Fine-grained Resource Control. Desktop Grid systems are running on
non-dedicated hosts. They share resources (e.g. CPU cycles, network band-
width, storage space) with other applications. In order to avoid interference
with these applications while at the same time exploiting idle resources most
effectively, a Desktop Grid system must allow for fine-grained resource us-
age monitoring and control. In Section 5.3, we describe how COHESION
integrates with the hosting environment to meet this requirement.

Limited Connectivity. In WAN scenarios, which are typical for Desktop
Grid deployments, universal connectivity is hindered by widespread use of
firewalls and network address translating (NAT) devices. Communication
in systems with the client/server operational model is client-initiated and
hence unaffected from this circumstance. However, P2P style communica-
tion requires mutual connectivity. To support this pattern, network segmen-
tations induced by firewalls and NAT devices have to be bridged. Concerning
NAT devices, there are several known traversal techniques [23], including
relaying, connection reversal and UDP/TCP hole punching. For firewalls a
common technique is to tunnel traffic over HT'TP. These issues are actively
addressed by emerging technologies like UPnP and IETF MIDCOM. How-
ever, these standards are still not widely supported. In Section 5.4, we show
how we solved connectivity issues by leveraging existing P2P communica-
tion technology.

Ad Hocness. The spatial distribution of peers induced by network segmen-
tations is accompanied by a temporal distribution. A host’s availability is
determined by the host system’s usage pattern. Since these patterns are,
in spite of some correlations (e.g. nodes located within the same timezone
more likely share the same usage patterns), in general irregular with respect
to different hosts, lifecycles of Desktop Grid nodes are largely decoupled.



Hence, a distributed computation in a Desktop Grid is much more dynamic
than the same computation performed on a dedicated system. One funda-
mental factor determining the actual impact of dynamism on efficiency is,
how fast node arrivals and departures are detected by the system. In Section
5.6, we demonstrate how COHESION supports ad hoc networks of nodes by
providing a group abstraction with customizable QoS properties.

Heterogeneity. While dedicated parallel machines are typically comprised
of identical or at least comparable subsystems, processors aggregated by
Desktop Grids are far more diverse. Platform specifics can be hidden by
utilizing a virtual machine. However, this measure can not deal with differ-
ences in host performance, which are typically very pronounced in Desktop
Grids. Thus, differences in performance must be reflected in the systems
execution model. As explained in Section 3, this issue is addressed by Co-
HESION’s support for fully dynamic problem decomposition.

Resource Volatility. Availability of a resource is the ability to perform
its intended function over a period of time. It is usually expressed as the
availability ratio, i.e. the quotient of uptime and total time. A reasonable
refinement [24] of the term can be achieved by distinguishing between host
availability and CPU availability. While the former is a binary value indi-
cating, whether a host is not currently in a faulty state, the latter is usually
defined as the fraction of CPU time consumed by the Desktop Grid appli-
cation. The fluctuation in resource availability characterizes a distributed
system’s volatility. Accordingly, fault tolerance strategies will have to deal
with two different kinds of volatility. CPU wvolatility originates in the de-
liberate shutdown of application instances by the COHESION application
container. As described in Section 5.3, this may, for example, be actuated
by user input or the orderly shutdown of the COHESION node itself. Applica-
tions may mitigate the impact of CPU volatility by exploiting the fact, that
they are notified before an application’s termination. Host volatility, on the
other hand, arises from host failures (i.e. node and infrastructure failures)
and usually does not allow for local compensation measures. However, their
consequences can still be attenuated, as they are detectable by other nodes.

The actual influence of both kinds of volatility on performance and sta-
bility is heavily application dependent. Thus, the choice of a suitable fault
tolerance strategy depends on application properties as well as on the under-
lying Desktop Grid’s characteristics. In Section 5, we show how COHESION
enables applications and higher level services to deal with both kinds of
volatility by providing a managed application lifecycle and a distributed
failure detection service.



- _ -
(a) Monolithic (b) Middleware (¢) Microkernel

Fig. 2. Evolution of the software architecture of Desktop Grid platforms

4.2 The Impact of P2P on System Architecture

Early Desktop Grid systems (e.g. SETI@home [25]) mixed up platform and
application functionality in a non-detachable manner (cf. Figure 2(a)). Due
to their monolithic and inflexible system design, these early systems were
superseded by more flexible Desktop Grid platforms (e.g. BOINC) designed
to support more than one application (cf. Figure 2(b)). The well understood
client /server interaction patterns of applications deployed on these platforms
still made it possible to provide a comprehensive set of platform functionality
that was largely application independent.

The transition to P2P interaction patterns results in a multitude of options on
every layer of the system. For example, the selection of an appropriate group-
cast technique for a given application depends on a large number of factors,
including network topology, expected communication load and required qual-
ity of service (QoS) properties. Generally, the design space for P2P Desktop
Grid systems and applications becomes highly multidimensional and thus is
considerably larger than the design space of conventional platforms. Conse-
quently, providing a comprehensive toolbox serving all conceivable application
requirements is no longer possible. Hence, a key purpose of next generation
Desktop Grid platforms must be to provide a set of generic reusable compo-
nents for common application aspects that may be replaced and supplemented
by optimized extensions, which are contributed by applications.

However, this improved flexibility makes great demand on system design, since
extensions may interact with core components of the system. Similar to the
evolution in the field of operating systems, we think next generation P2P com-
puting systems must be specifically designed to cope with application-specific
customization at the system level. In Section 5.1, we describe how we attained
this goal in COHESION by explicitly supporting extension and customization of
all major components through a design based on the Microkernel architectural
pattern (cf. Figure 2(c)).

10



Task Load Balancing Termination Detection Fault Tolerance
Model

Task Pool

Virtualization

210D Wiofield 1950

Communication

Host System
Integration

Java Virtual Machine (JVM)

Solaris Windows Linux Others
Fig. 3. COHESION’s layered architecture

5 Design and Implementation of Cohesion

This section describes the design and implementation of COHESION and dis-
cusses how we addressed the challenges in achieving high efficiency for task-
parallel ISPs. Figure 3 depicts the layered architecture of COHESION. Before
we describe the functionality provided on each layer in detail, we give a brief
top-down overview.

The Task Model layer provides a generic execution infrastructure on top
of which various task-parallel programming models can be implemented.
Tasks are put into a distributed task pool, which controls their lifecycle
and enables task migrations between task queues. Lifecycle transitions are
published as events, thus enabling the adaptation of the task pool’s behavior
to the requirements of particular programming models and applications.
Thus, among other things, specialized load balancing and fault tolerance
strategies suited for distinct Desktop Grid setups and applications can be
easily plugged into COHESION.

Virtualization creates an abstraction layer between distributed resources
and applications. This layer provides services to discover and organize re-
sources, to monitor their availability and to coordinate their usage. Nodes
become visible within the Grid by joining a group. A group’s primary pur-
pose is to define a scope for interaction. Resources contributed by group
members are published and looked up using a discovery service. To main-
tain an accurate view of the available resources, an efficient failure detector
is employed, that is used to detect unexpected node departures.

Communication in COHESION is highly configurable and enables higher-
level virtualization services and programming models to instantiate custom
communication primitives. The concept of composable channels allows to as-
semble communication channels from modularized quality of service (QoS)
aspects, e.g. reliability, encryption or compression. Channels are established
between endpoints that are first class objects, which can be published and
looked up using the discovery service. The communication layer provides

11



several unicast and groupcast endpoint implementations with different per-
formance characteristics that may be complemented by custom ones.
Host System Integration provides functionality to embed COHESION into
the hosting environment. A sensor-driven container-controlled application
lifecycle ensures most effective resource utilization while at the same time
preventing interference with the hosting environment’s intended use. Sensors
for CPU load, input devices (i.e. mouse and keyboard) and system time can
be combined in arbitrary ways to control when applications can be executed.

Since COHESION is completely implemented in Java™and does not impose
any other requirements on the hosting system, it is fully portable and runs
on every platform for which a Java Virtual Machine (JVM) is available. A
COHESION Grid is comprised of at least one edge node running the COHESION
middleware and one or more (network specific) infrastructure nodes.

Due to their large scale and decentralized character, P2P Desktop Grid sys-
tems are considerably harder to manage than conventional distributed sys-
tems. COHESION specifically addresses this challenge by providing a compre-
hensive integrated management architecture, which is described in [26].

5.1 OSGi Platform Core

COHESION is explicitly designed to be modular and extensible with respect
to almost any aspect of the system. This not only promotes COHESION’s suit-
ability as a research platform. As discussed in Section 4.2, we believe that this
is the next natural step in the evolution of Desktop Grid middleware. With
the ability to replace the generic implementations for all major abstractions,
applications are free to deploy an implementation that best fits their needs.

A suitable architectural pattern for building such a reconfigurable platform
is the Microkernel pattern [27]. It separates a minimum functional core from
supplementary functionality and application-specific extensions and serves as a
socket for plugging in and coordinating these extensions. Our implementation
of the microkernel pattern is based on the Open Services Gateway Interface
(OSGi) standard [28]. OSGi is a dynamic module system for the Java platform.
It implements a service bus, that allows for dynamic discovery, assembly and
online reconfiguration of modules and their interdependencies. By leveraging
OSGi technology, we can profit from an industrial-strength framework for
service-oriented component-based applications.

OSGi is designed as a layered framework. The module layer defines a class-
loading model, that substitutes the simple classpath model of the Java plat-
form. This model allows for fine-grained control over the import and export

12



interfaces of a module and forms the basis for OSGi’s fully integrated security
model with strict class space separation at module borders. The lifecycle layer
introduces the notion of bundles. A bundle is a module with a lifecycle. Bun-
dles may be dynamically installed, started, stopped, updated and uninstalled.
OSGi provides declarative mechanisms to specify fine-grained dependencies
between bundles at the Java package level.

Finally, the service layer provides a service mediation facility. Bundles may reg-
ister service objects (i.e. plain Java objects decorated with descriptive proper-
ties) that may subsequently be discovered and bound by other bundles. When
the registering bundle is stopped, all its registered services are automatically
unregistered. To be notified of changes in service availability, bundles may
register listeners. Based on a service description (usually an LDAP filter) the
service bus selects matching service implementations and notifies the regis-
tered listeners. The concrete service implementation chosen by the bus service
mediation protocol is completely transparent to the requesting bundle. OSGi’s
ability to keep implementation details private by restricting package visibility
is used to prevent access to sensitive subsystems. This is of particular impor-
tance, since third-party bundles may contain malicious code.

COHESION turns all of these features to profit: The bundle mechanism is used
to subdivide the platform into manageable modules. Each component shown
in Figure 3 is implemented as a bundle comprised of an API, i.e. the service
interfaces, and at least one default implementation thereof. The ability to
dynamically reconfigure the bundle set is leveraged to hot-deploy applications.
Finally, the service bus enables COHESION applications to replace out-of-the-
box service implementations with application-specific ones.

5.2 Security

In P2P Desktop Grid Computing environments code is executed on geograph-
ically and organizationally dispersed peers. The lack of a central authority
mandates that facilities are deployed to ensure that, on the one hand, no ma-
licious code is executed on the peer and, on the other hand, the distributed
computation’s integrity is not tampered with. COHESION is well-prepared to
deal with common security threats by leveraging Java™and OSGi technology.

COHESION implements a trusted code security model, where only certified ap-
plications can be deployed and executed within a sandbox. This precautionary
measure is of particular importance for applications contributing system-level
components, since these may compromise not only the application but the
system as a whole. Sandboxing has been successfully employed in other Desk-
top Grid platforms [29] to prevent abuse of participating hosts and alteration

13



or disclosure of application data and code. COHESION adopts this approach
by using the sandbox provided by the JVM combined with the OSGi secu-
rity infrastructure. The latter provides a role-based security facility that com-
plements the code- and origin-based permission model of the Java platform.
Furthermore, OSGi allows for dynamic modification of the security policy.
Thus, we can prompt the user, when a suspicious action is attempted by an
application.

Security has been taken into account on other layers of the COHESION protocol
stack. Communication can be secured by using Java cryptographic streams,
that are wrapped around raw transport channels using COHESION’S compos-
able channel service. On the virtualization layer, COHESION groups can be
secured, so that only nodes with suitable credentials are able to join. Since
resources published in a group can be discovered and instantiated by group
members only, they are effectively shielded from unauthorized access. To im-
plement this feature, COHESION relies on the facilities provided by substrate
technologies.

5.8 Host System Integration

COHESION is embedded into non-dedicated host systems sharing resources like
CPU cycles, network bandwidth and disk space with other user processes. On
the one hand, COHESION should execute in a minimal invasive way, that does
not interfere with these user processes, thus ensuring host system sovereignty.
On the other hand, idle resources should be utilized most effectively to opti-
mize application efficiency.

In contrast to other platforms, COHESION applications are not executed per-
manently as a background process or only when the system screensaver is
active. The first has proven to be well-suited for primarily CPU-bound prob-
lems. However, for applications with high memory consumption or 1/O sub-
system load, the user experience may be compromised by penalties caused
by resource exhaustion, like excessive paging/swapping (thrashing). While
perfectly shielding the user from impairment, the latter is too inaccurate,
especially with the advent of multi-core processors, resulting in suboptimal
resource utilization.

Instead, COHESION dynamically reacts to changes in host system resource
availability. For that purpose selected host system parameters (e.g. mouse/key-
board activity or CPU load) are permanently monitored using a pluggable
sensing framework. When user-defined conditions are satisfied, applications
are dynamically activated or deactivated by the system.

Since applications in COHESION can contribute extensions and drop-in re-

14



Lifecycle Handler

Cistoniae ) (5o ) 5op ) (Teminate ) LCO”;E
Screen p—— %
Saver —

<invokes>

Application

s

Mouse
Movement

<adl:application name="Mandelbrot Worker">

<creates>
Rule-Based Rule-Based
Application Controller Instance Controller
<adlinstance>
<adl:handler type="MandelbrotWorker" />

<defines> <defines> <adl:controller component="RuleBasedinstanceController">
inding component="_ inding" name="mouse.idle">
ADL <rdl:sensor id="urn:cohesion:sensor:/system/input/mouse">
<rdl:wire-attribute name="delay">60s</rdl:wire-attribute>

</rdl:sensor>

Document

</rdl:binding>

<rdl:rule id="terminate" domain="profile,instance.state">
<rdl:condition type="LDAPFilterCondition">

<rdlfilter>(mouse.idle=true)</rdIfilter>

</rdl:condition>
<rdl:action type="Transition" from="*" to="TERMINATED"/>

</rdl:rule>

</adl:controller>
</adl:instance>

</adlinstantiator>
</adl:application>

Fig. 4. COHESION’s sensor-driven container-controlled application model. An ADL
document is used to define under what conditions an application is executed.

placements for generic platform components, it is crucial to protect the sys-
tem from uncontrolled application behavior, that may render the system state
inconsistent. Thus, COHESION mandates a strict lifecycle for applications con-
tributing such components. This lifecycle, modeled as a finite state machine,
is enforced by an application container. While the set of available states is
fixed (i.e. FETAL, INITIALIZED, RUNNING, SUSPENDED and TERMINATED), the
transition conditions are customizable through pluggable controllers. Prior
and after each transition, an application-specific callback handler is invoked.
Thus, application logic can react to state changes of the underlying application
instance. Controllers are employed on two different logical levels: while appli-
cation controllers are responsible for deploying, undeploying and instantiating
applications, instance controllers are used to start, suspend, resume and ter-
minate application instances. Thus, every aspect of an application’s lifecycle
can be controlled by deploying and configuring a suitable pair of controllers.

The most advanced controller family of COHESION is based on a rule engine.
By incorporating host environment embedded sensors, transition rules, which
are declared in our Application Description Language (ADL), can be used to
define application control logic, that respects host system sovereignty, while
at the same time exploiting idle resources most accurately (see Figure 4).

15



5.4  Substrates

COHESION is designed to be network agnostic. It can be used on top of any
network technology that satisfies a minimal set of constraints. To abstract
from the specifics of the underlying network, we introduce the notion of a
substrate. It consists of

e a group implementation with an (at least) weak partial group model,
that is used to instantiate the root group,

e a unicast endpoint that provides at least connectionless channels with
unreliable message delivery, from which channels with higher-level quality
of service characteristics can be derived, and

e optionally, a groupcast endpoint that takes full advantage of the features
of the underlying network technology and thus can be used as an efficient
drop-in replacement for the generic groupcast implementation provided by
COHESION that simply unicasts messages to all group members.

Substrates may be environment specific or serve a special purpose. For exam-
ple, an approach based on a star topology can be used to route all messages
through a central gateway, thus providing insight into the message flow for de-
bugging or performance evaluation reasons. Up to now, we have implemented
two substrates: a scalable one, that is based on JXTA and a more efficient one
based on XMPP.

While JXTA is considered to be a good choice for implementing distributed
computing platforms [30], performance studies reveal weaknesses in the cur-
rent Java reference implementation concerning pipe latency and throughput
for small messages [31], reliability of TCP connections [32] and rendezvous
network stability [33].

XMPP implements a more centralized scheme, hence limiting scalability, but
with superior performance. Nevertheless, XMPP servers have shown to scale
up to tens of thousands of concurrent clients (at least for moderate message
rates) [34]. Our XMPP substrate uses TCP/IP connections to bypass the
XMPP server for link-local communication (i.e. within the same segment),
thus permitting higher overall traffic.

5.4.1 JXTA

JXTA [35] is an open source project initiated and maintained by Sun Mi-
crosystems. It is based on an open XML protocol stack, which allows any
two devices on a network to exchange messages despite of the underlying net-
work topology. This is accomplished by establishing a virtual overlay network

16



RRRRRR

Firewall er (NAT)

= = = =
S SV N = 5 2 2
i Subnet #1 ‘ * * PPPPP * *
oo e
Peer
= =
NS Z] = 5 =
S J— B & ] i Iy
[ = IR ) L (S — = —

»
g

(a) JXTA overlay network with ren- (b) XMPP network with TCP/IP
dezvous and relay infrastructure peers. shortcuts between nodes located in the
same subnet.

Fig. 5. Cohesion network substrates

that allows a peer to transparently interact with other peers even across net-
work boundaries induced by firewalls, NATSs or non-interoperable transports.
JXTA is the most mature P2P communication framework currently available
that allows for true decentralized communication.

The JXTA virtual overlay network (see Figure 5(a)) employs two kinds of
special purpose peers. Rendezvous peers have an optimized routing mechanism
that allows an efficient propagation of messages received from edge peers.
Therefore, a loosely consistent network of rendezvous peers is maintained.
Peers that are behind firewalls or NAT systems still can take part in the
JXTA network by using the services of a relay peer. Typically, this is done
over protocols like HT'TP that can traverse introspecting firewalls.

JXTA groups are, similarly to those of COHESION, used to scope communi-
cation and to establish secure partitions within the unstructured set of par-
ticipating nodes. However, JXTA does not provide an explicit facility to get a
nodes view on the groups membership. Instead a simple discovery service can
be used to query for peers within a peer group. Since this approach produces
fluctuating membership views due to flaws in the reference implementation
of the discovery service, we use our substrate agnostic generic group model
that is described in Section 5.6.1. While unicast communication is realized on
top of JXTA sockets, groupcast communication is based on JXTA propagate
pipes that use IP multicast, thus offering support for efficient broadcasts on
local subnets.

5.4.2 XMPP

The Eztensible Messaging and Presence Protocol (XMPP) is an open, XML-
based protocol for real-time instant messaging. As the core protocol of the
Jabber Instant Messaging and Presence technology, XMPP is deployed on
thousands of servers and is used by millions of people worldwide.

17



XMPP is a client/server architecture (see Figure 5(b)). Hence, even for point-
to-point communication the XMPP server is required to route messages to
their destination node. Consequently, the server turns out to be a bottleneck
for large numbers of communicating clients. To overcome this limitation, we
have implemented an extension that allows for establishing direct TCP/IP
connections (shortcuts) between nodes within the same segment. Since mes-
sages delivered over shortcuts bypass the XMPP server, we can achieve con-
siderably higher message rates. TCP endpoints used to establish shortcuts are
advertised and discovered by embedding them into vCards, which are defined
by the Internet Mail Consortium (IMC). The XMPP unicast endpoint imple-
mentation periodically checks whether the recipient of a message is reachable
via the shortcut, falling back to ordinary server-based delivery if not.

COHESION groups are mapped one-to-one to XMPP Multi-User Chat [36]
rooms (MUC). A MUC room is populated by a number of members, its oc-
cupants. The list of occupants is maintained on the XMPP server hosting
the MUC room. Any update is immediately pushed to all members of the
room. Thus, XMPP-based COHESION groups are both accurate and efficient
even in the absence of an explicit failure detection component. XMPP group-
casts are implemented by facilitating MUC’s ability to broadcast messages to
all room members. Both, the XMPP-based group model and the groupcast
implementation, are drop-in replacements for the generic substrate-agnostic
implementations described below.

5.5 Communication

COHESION nodes communicate by exchanging SOAP (Simple Object Access
Protocol) messages over channels. SOAP is used as a lightweight, structured
and extensible message format. Utilizing an XML message format not only
boosts interoperability, but also ensures operability in the presence of intro-
specting firewalls.

COHESION’s composable channels are an instance of the Decorator [37] design
pattern: Channels of arbitrary complexity can be constructed from compar-
atively simple reusable components. Each component encapsulates a certain
aspect of communication (e.g. reliability through a sliding window protocol
algorithm, encryption or compression). This modularization of communica-
tion aspects fosters reuse and reduces complexity. The composition process is
implemented as a service. Compositors may be registered by provider bundles.
Following the Chain of Responsibility [37] pattern, each registered compositor
contributes to the composition by wrapping a proxy channel around the raw
channel that satisfies a subset of the yet unresolved set of constraints. The
resulting channel and the remaining unsatisfied constraints are passed on to

18



Sliding
Window Protocol

Java Stream
Integration

® Reliability
Channel
Composition
C,
H iption

<FaultTolerance> | <uses> 4

ok

<Substrate>

XMPP

Task Redistributor

Composed
Channel

Q Compositor {I Bundle

Fig. 6. Channel composition from encapsulated communication aspects contributed
by bundles.

the next compositor. If any constraints are still unsatisfied after the last com-
positor has been engaged, the application is notified that the request can not
be satisfied. Figure 6 illustrates the composition process for a reliable channel
with transparent compression. By using channel composition, implementors
are free to assemble channels from a repository of reusable components with
exactly those QoS properties they actually need, while at the same time min-
imizing system load by avoiding unnecessary protocol overhead.

Channels are established between endpoints. COHESION provides a range of
unicast and groupcast endpoints with different semantics. They are contributed
as extensions to and managed by an endpoint management facility. There are
two conceptually different types of endpoints in COHESION: While ordinary
endpoints are resources, and are published and discovered using the discovery
service, a priori endpoints, like groupcast endpoints, are available immedi-
ately after the hosting group is joined. The reason why the former must be
discovered is, that they usually depend on information which is available to
the publisher only (e.g. IP address and TCP port or a JXTA pipe identifier).

To support a wide spectrum of different requirements, we provide several
groupcast implementations featuring different transmission characteristics: a
generic one that uses unicast endpoints to deliver messages, an epidemic one
that is bandwidth conservative as it injects payload into external messages
to reduce overhead introduced by non-payload message parts, and an imple-
mentation of Bimodal Multicast [38], a randomized protocol with probabilistic
reliability properties. While the aforementioned groupcasts are available irre-
spective of which substrate is used, our substrates deploy optimized implemen-
tations that take advantage of the underlying communication infrastructure
(see Section 5.4).

By specifying abstract constraints, client bundles can — without any knowl-
edge about the actual implementation — select an endpoint implementation
that best fits their needs. This is crucial, since an inappropriate choice may
have a considerable impact on the scalability and performance of higher level
functionality.

19



5.6 Virtualization

Through virtualization, higher level services (e.g. workload balancing) can
deal with resources as first class objects. In COHESION parlance, virtualized
resources are called entities. Examples of entities are groups and endpoints.
Entities are announced to the system by publishing an XML description within
a distributed directory. Once discovered, a local proxy object is derived from
the description, which can be used to interact with the remote entity. In con-
trast to the discovery service of JXTA, COHESION leverages XQuery [39] to
allow nodes to lookup resources with maximized expressiveness, thus reduc-
ing bandwidth consumption by minimizing unnecessary transmission of entity
descriptions.

The efficiency of resource utilization, and hence of the parallel computation it-
self, heavily depends on an up-to-date view of the available compute resources.
Since resources are contributed by nodes, this translates to the necessity to
quickly and accurately detect node arrivals and departures. Detection speed,
i.e. how long it takes until a healthy node becomes visible or a faulty node
is detected, and accuracy, i.e. how much the reported differs from the ac-
tual membership, are aspects of the efficiency [40] of the group model and
failure detection scheme employed. We could have incorporated a monolithic
approach (i.e. based on a lease mechanism), combining group membership
and failure detection. However, this would have introduced a direct coupling
between detection speed and accuracy, limiting the overall efficiency. Hence,
group membership and failure detection are separate concepts in COHESION.
Since group membership is maintained on the server and propagated instantly
to group members in XMPP, our XMPP-based substrate deploys a custom so-
lution that is very efficient without using a failure detector at all.

5.6.1  Group membership

In COHESION, nodes become visible as entities by joining a group. Groups
are entities too and thus may be published and discovered using the discov-
ery service. A group’s conceptual purpose is to establish a logical partition
within the node set and to define a scope of interaction (e.g. for communica-
tion through groupcast endpoints). Since groups are hierarchical, programmers
may express relations among groups (parent/child, ancestor/descendant, sib-
ling, etc.) in accordance with the application’s domain model. This feature
is frequently used throughout the components of COHESION. For example, a
separate group is created at the task model layer for each calculation, thus
promoting isolation (in terms of security and fault tolerance).

A group’s properties are determined by the implemented group model. In

20



COHESION, such models may be contributed as extensions and are bound to
concrete groups at runtime based on constraints provided on creation. Thus,
higher level services are able to select a group model, whose properties best
fit their needs. COHESION provides two group implementations with different
QoS characteristics out-of-the-box.

With Scamp [41], COHESION supports a fully decentralized, self-organizing
membership protocol that establishes a partial view of size O(log(n)) on each
member node. The resulting high scalability is required for supporting large
numbers of members in the COHESION root group (which consists of all avail-
able nodes).

For efficiently supporting fine-granular parallel computations, we also need
a group model with complete local views. This is an exemplary use case for
COHESION’s extensibility and customizability. We can deploy a simple view-
complete group membership algorithm based on subscriptions within calcula-
tion groups. When a node joins a group, it groupcasts a subscription message
that uniquely identifies itself. On receipt, remote nodes add the respective
node to their membership list. To populate the membership view of the sub-
scribing node, O(log(n)) randomly chosen nodes respond with a copy of their
membership list. More precisely, each node emits such a seed, with probability
O(log(n))/n. Since the set of seeding nodes may be empty and the employed
groupcasts implementation is unreliable for efficiency reasons, nodes may miss
initial subscriptions. Thus, subscriptions are reemitted periodically. Without
volatility and supposing no node is permanently isolated from the others, all
nodes eventually share the same complete view on the group’s membership.
To unsubscribe, departing nodes groupcast a sign off message. On receipt,
remote nodes remove the issuing node from their membership list. Again the
sign off message may get lost. Thus, subscriptions are valid for a given finite
period only. If a subscription expires, the node is removed from the member-
ship list. To tolerate stochastic message losses, subscriptions are emitted more
than once during the validity period of a subscription. If global membership
remains stable, local membership views converge and become eventually com-
plete. With n member nodes, we have O(n) groupcasts per time unit resulting
in O(n?) message complexity on the link layer, for any substrate that provides
a groupcast with O(n) message complexity.

5.6.2  Fuailure detection
Failure rates in desktop grids are considerably higher than in common parallel
environments. To limit the impact on resource utilization, speed as well as

accuracy of failure detection becomes key.

In COHESION, host availability is defined by a node’s membership in a group.

21



However, if a node crashes or becomes isolated by faulty network links, the
node’s membership would not be canceled through explicit unsubscription by
the group membership protocol. Thus, the delay between node departure and
the detection thereof is determined by the validity period of subscriptions.
However, decreasing the subscription validity period by a factor of f means
an increase of O(fn?) in message complexity. Hence, having a complementary
failure detection protocol with lower message complexity is beneficial. Thus,
we use a dedicated failure detection component to detect ungraceful node
departures.

Our default failure detection protocol has been adopted from the SWIM sys-
tem [42]. Nodes are monitored through an efficient P2P periodic randomized
probing protocol. Neither detection speed nor message load per member vary
with group size. False positives (i.e. nodes that are wrongly considered faulty)
are reduced by first suspecting a participant node before declaring it as failed.
The detection delay is bounded by Q(RTT,.), where RTT,,. is the worst case
round trip time (considered non-faulty). The physical layer message complex-
ity is O(1) per healthy and O(n) per faulty node and round, resulting in an
aggregated asymptotical worst-case complexity of O(n?). Although the asymp-
totical complexities are identical, the number of messages sent by the detector
is considerably smaller, since faults are — albeit frequent — still the excep-
tional case.

5.7 Task Model

CoOHESION adheres to a clear conceptual distinction between task model and
programming models. This simplifies the adaptation of advanced programming
models, for their implementors will not have to deal with lower level details
of task enactment and migration. Consequently, from the COHESION task
model’s point of view, programming models are applications themselves.

A task model, which is suitable for programming models that support dynamic
decomposition, has to deal with several nontrivial issues. In particular, spawn
relationships and dynamically created data dependencies between tasks have
to be modeled, since tasks may be created anywhere and anytime. Our task
model defines a task lifecycle managed by a distributed task pool. Once a task
is added to the (local) pool, it will eventually be executed in the Desktop Grid.
In addition to the distributed task pool, load balancing and fault tolerance
are capsuled within distinct bundles.

22



Lost

(virtual)

-«
Qleald

migrate
&
drain

schedule
READY <> RUNNING ------ > Finsmep ——" > Done
migrate

(virtual)

migrate

CANCELED
(virtual)

Fig. 7. A COHESION task’s lifecycle.
5.7.1 Task Pool

Tasks are managed by a distributed task pool formed by the local task pools
running on each COHESION node. A local task pool includes a dequeue of
ready tasks and a configurable set of worker threads, which execute the tasks.
A COHESION group is used to define a scope for interactions between local
task pools (e.g. a group’s view is used to select partners for load balancing
actions) and to isolate pools from each other to support concurrently executing
computations.

Logically, a local task pool manages the tasks’ lifecycle and notifies subscribers
of lifecycle transitions in an Observer pattern style. A task’s lifecycle (see Fig-
ure 7) consists of its creation, possibly several migrations, its completion and
finally the delivery of its result. Tasks are marked done when their result is
delivered, can be canceled before completion, and may be temporarily lost
due to host failures or incomplete migrations. For tasks being in such a wvir-
tual state, there is no actual task instance, although they are still represented
within the system by means of a unique task identifier to support fault tol-
erance mechanisms or to avoid execution of descendants of already canceled
tasks.

Every task is associated with two distinguished nodes: its source node, where
it has been created, and its drain node, which will accept its results. While
ready tasks may be migrated for load balancing purposes, finished tasks will
migrate to their drain node. Due to limitations of serialization in Java, Co-
HESION supports weak migration only. In contrast to strong migration, where
the whole memory image (including the current state of the stack, the value of
the program counter and all reachable objects) is sent to the destination site,
weak migration transfers the serializable state of an object (i.e. all referenced
objects) only and requires that the migrating object has agreed to and actively

23



supports its own migration.

As discussed in Section 4, applications are shut down when the CPU is no
longer available. In this case, the local task pool migrates remaining tasks to
randomly chosen remote pools, thus reducing the impact of CPU volatility.
In contrast, host volatility is more difficult to handle since host failures are
unpredictable and happen instantaneously. Thus, affected nodes are not able
to react as in the case of graceful application termination. They even cannot
unsubscribe from joined groups and thus remain a part of the membership
lists of remote nodes. However, since the remaining nodes will eventually be
notified of the host failure by the COHESION failure detector, lost tasks, that
were located at the faulty host, can be revived by a fault tolerance module. For
that purpose, tasks may define a special restart behavior (see Section 5.7.3).

5.7.2 Load Balancing

Conforming to COHESION’s design principles, load balancing is capsuled in an
interchangeable module. We provide two default implementations. Depending
on infrastructure and application characteristics custom approaches can be
employed.

In smaller, homogeneous networks a randomized work stealing strategy can be
used, where idle nodes periodically send queries to randomly selected peers.
Non—idle nodes answer by transferring some of their ready tasks. For other
cases load balancing strategies can use COHESION groups to model the under-
lying Grid topology. One such approach is the combination of a random steal-
ing strategy within local COHESION groups with a random pushing strategy
within a global COHESION group. A node with a non-empty ready dequeue,
having not received a stealing message for some time, may ask nodes outside
of its local group, whether they are idle and transfer some of its ready tasks
on the receipt of a positive answer. This strategy makes use of COHESION’s
ability to combine group views via set operations. It can be beneficially ap-
plied in the case of segmented networks with inhomogeneous latencies and
bandwidths.

5.7.8 Fault Tolerance

COHESION provides a default fault tolerance module implementing an exten-
sible task restarting strategy to deal with lost tasks. On the creation of a task,
its source node sends a copy to the drain node, which records the task as well
as its location. Once a task’s drain node detects a fault at the task’s current
location (which may have changed since its creation due to one or more mi-
grations), it will invoke the restart method on the retained copy of the lost
task and add it to the local task pool. Since a node on a faulty host is no

24



longer able to process results, all tasks depending on it as their drain node are
canceled.

To support application specific extensions of the basic scheme, COHESION
employs the Visitor pattern. If a restart operation is initiated, each registered
visitor may modify the list of tasks about to be restarted as well as the tasks
themselves. As described in Section 6.2, this feature can be used to implement
an application-specific checkpointing scheme.

6 Applications

In this section, we evaluate our approach in the light of two applications
exhibiting a high degree of irregularity — Mandelbrot Sets and Discrete Op-
timization. Moreover, we demonstrate how programming models suitable for
ISPs can be implemented on top of COHESION’s task model.

6.1 FEzxperimental Setup

As explained in Section 4, there are many factors influencing the performance
of a Desktop Grid system. Conducting live tests is not a promising approach
to provide insight into the effects of volatility, since measurements are not
reproducible. Using network simulators is not an option either, since appli-
cation behavior itself is a key aspect of the system’s behavior. Thus, our
testing strategy is double-tracked. On the one hand, we conducted a series of
measurements under artificially generated volatility within a controlled and
homogeneous environment. For this setting we employed the Mandelbrot Set
application, because it exhibits a high degree of irregularity and at the same
time does not suffer from work-anomalies. (In this context, the term work-
anomalies means that the total amount of work differs significantly between
the sequential and the parallel computation and/or between several parallel
computations of a problem instance. For example, this behavior can often be
observed for heuristic graph search methods [43].) Thus, Mandelbrot Sets are
well-suited to provide meaningful insights into the performance characteristics
of COHESION under resource volatility.

On the other hand, a test series with the Traveling Salesperson problem (TSP)
and a larger number of heterogeneous nodes gives evidence to the efficiency and
scalability of COHESION under real-world conditions. Our testbed consisted
of hosts from two pools (see Table 1). While hosts within the same pool were
interconnected by a 100 Mbps Fast Ethernet network, communication between
hosts from different pools is carried out over a campus WAN.

25



Type Hardware OSs

I 3 GHz Pentium 4 (1 GB RAM) Windows XP
I1 3.06 GHz Celeron (1 GB RAM) SUSE Linux

Table 1
Host types used for experiments

For evaluating COHESION’s behavior in a volatile environment, we had to
simulate the effects of CPU and host volatility. To control CPU availability,
we leveraged COHESION’s application lifecycle support. Nodes were configured
to run the respective application for a given time-period only. When this time
is elapsed they query a coordinator node, whether to shutdown orderly or
abruptly. The former results in controlled termination of the application and
actuates the migration of a node’s tasks to randomly chosen nodes. The latter
simulates a host failure. Thus, no measures are taken to compensate loss of
uncommitted work. After termination a node is immediately restarted. Since
the time penalty for restarting COHESION is small, we can retain the notion of
parallel efficiency, thus focusing the analysis on the effects of volatility itself.
Even in the case of an orderly shutdown, work may partially be lost. Thus, the
average efficiency will certainly drop below its value in the non-volatile case.
A host failure, however, prevents any measures by the failing node. Thus, the
impact of host volatility on efficiency will be more severe. Using a coordinated
approach for controlling volatility allows us to measure the effects of arbitrary
mixes of shutdown and host failure events.

6.2 Multithreading Programming Model

Based on the task model presented in Section 5.7, COHESION provides an
object—oriented implementation of the strict multithreading parallel program-
ming model [44]. Strict multithreading is a powerful tool for the development
of distributed programs based on dynamic problem decomposition.

In multithreading programming models, threads can create (or spawn) new
threads. A multithreaded computation is called fully strict, if a thread may
only send results to its parent thread. Thus, fully strict multithreading is very
similar to programming with asynchronous procedure calls. The class of strict
multithreaded computations is a superset of fully strict computations. In strict
multithreading a thread’s addressee may either be its parent or its parent’s
addressee and threads can deliver several results. This can be modeled by the
concept of thread groups [45]. A thread group is a set of threads delivering
their results to the same data sink. A thread can own any number of thread
groups and query their results.

26



COHESION supports strict and fully strict multithreading. Threads can be ex-
plicitly added to a thread group (fork primitive), or implicitly added to its
parent’s thread group (hyperfork primitive). They are implemented as COHE-
SION tasks, while thread groups are modeled as objects, which are owned by
a thread. Results are delivered to a queue held by the thread group. A thread
group’s owner can query its results via the join primitive.

Multithreading task identifiers consist of two vectors. One vector represents
the task’s position within the spawn tree. The other vector counts the num-
ber of restarts due to fault tolerance measures. Thus, a thread is uniquely
identified. Threads may query properties of the local task pool (e.g. the ready
dequeue’s current size) to decide upon the necessity of a decomposition step.

6.2.1 Mandelbrot Sets with Strict Multithreading

A Mandelbrot set is a fractal subset of C. A number (z,y) € C belongs to a
Mandelbrot set if it is quasi—stable, i.e. the absolute value of a specific function
does not exceed some limit after any number of iterations. In visualizations of
Mandelbrot sets a pixel’s color value is determined by the number of iterations
for which this condition holds. Mandelbrot sets are a typical example of irreg-
ular problems, because the iteration depth of pixels and thus the computation
time of pixel rows may vary heavily and cannot be predicted [46].

Our parallel approach advances row—wise. Initially, a certain amount of tasks
(comprising several rows) are generated using the fork primitive. When nodes
run idle, a running task dynamically creates a new task (employing the hyper-
fork primitive), which gets half of the rows not yet computed. Each completed
row is sent to the initial task (the thread group’s owner). Hence, the initial
node can keep track of a computation’s progress. This enables the implemen-
tation of an implicit checkpointing mechanism by registering an appropriate
visitor with the task restarter module (see Section 5.7.3). This visitor will
adapt the restarted tasks’ row sets according to the currently open rows. Re-
turning results row—wise also helps evening out the network load on the thread
group’s node. In the case of an orderly shutdown, remaining tasks are trans-
fered to randomly chosen peers. A pointer to the current row is kept in a field
of the running Mandelbrot thread, thus enabling its migration, though the
row currently being computed is lost.

If the frequency of incoming results drops below a threshold, new threads
are created from the list of open rows (eager scheduling). This ensures the
application’s progress under high failure rates. Additionally, the initial node
groupcasts a message with the list of open rows and an identifier of the current
computation within constant intervals. This helps preventing excess compu-
tation resulting from fault tolerance measures and outdated tasks. The initial

27



node detects termination of the parallel computation, when the list of open
sub-problems becomes empty.

6.2.2 Performance Fvaluation

This section presents an analysis of the performance results obtained for our
Mandelbrot application in a controlled yet volatile Desktop Grid under worst-
case conditions. Our testbed consisted of 48 COHESION instances running
on Type-I nodes. While the sequential runtime of the problem instance used
throughout the test series was 49506 seconds (approx. 13 3/4 hours), the
parallel runtime in a non-volatile setup was 1324 seconds (approx. 22 minutes)
resulting in a parallel efficiency of 78% (or a speedup of 37.4).

Figure 8(a) shows the parallel efficiency achieved for increasing resource volatil-
ity and different ratios (Ry) of host and CPU volatility (i.e. Ry = 10% means
one out of ten events is due to host volatility). We conducted 10 test runs for
each of a total of 21 different configurations.

Every loss of a task results in the loss of a portion of work already done. Thus,
it is not surprising that the efficiency is more and more degrading when the
event rate per node increases. The significant differences in efficiency (between
30% for T = 1500s and 74% for T" = 300s) obtained for varying event type
ratios stem from the fact, that the amount of lost work is different when nodes
are orderly shutdown and nodes are terminated by host failures. While in the
case of CPU volatility, only the row currently being processed is lost, the
impact of host failures is more severe, since the task as a whole is restarted
on another node. This result indicates that application-specific compensation
measures on application termination are quite effective.

The fact that in the case of pure CPU volatility losses in efficiency are that
pronounced can be attributed to penalties resulting from the time necessary for
redistributing tasks from the local task queue prior to application termination
and startup effects, i.e. the idle time before a first task is successfully stolen
after a restart.

Figure 8(b) and Figure 8(c) clearly show that the overall number of events and
the frequency with which they occur heavily influence the overall efficiency.
Furthermore, they corroborate the observation that the impact of host volatil-
ity is more severe. Note that the worst-case character of our tests is evident
from Figure 8(c): A maximum of 0.18 events per second is far beyond what is
to be expected in a similar sized live Desktop Grid.

28



100

] +Rf =0% XRe =10% X Ry =100%
75%
50%
0:..............
200 400 600 800 1000 1200 1400 1600

(a) Parallel efficiency (%) against per node event inter-
vals (s)

100
+Rf =0% XRf =10% X Rg = 100%

75

50

e

25 X 4
Mg .

0 +——rrrrrrrr T T T

0 250 500 750 1000 1250 1500 1750 2000

(b) Parallel efficiency (%) against overall number of

events

100 1 +Rf =0% XRf =10% X Rp =100%
] .

75 X+-q¥
T x4
1 2+
i ig % :§<x ;t
] e Xg( .

50 - Wl % :
] C X %
1 + +

25 ><)§ ’jii
] X

0 _——
0 0,05 0,1 0,15 0,2

(c) Parallel efficiency (%) against event frequency (1/s)

Fig. 8. Efficiency of Mandelbrot in a volatile environment.

6.3 Aspect-oriented Discrete Optimization

In this section, we show how aspect-oriented techniques help to execute exist-
ing code for discrete optimization in a COHESION Grid without any modifica-

29



tion of the sequential code base [47].

6.3.1 Parallel Discrete Optimization

Discrete optimization is concerned with finding an element z,, out of a fi-
nite discrete set X defined by certain constraints. In most cases, this means
minimizing a function f with f(x,.) = min{f(z)|x € X}. Using state space
graphs, elements of X can be represented as paths in a graph. An example
is the Traveling Salesperson Problem (TSP), where paths represent partially
constructed tours, starting from the empty tour as the root node. Performing
discrete optimization then basically consists of traversing a tree, heading for an
optimal solution. One usually uses an agenda containing the tree nodes still to
be visited. Search algorithms extract, visit and branch nodes to obtain possible
successor nodes, which are appended to the agenda. The search terminates as
soon as the agenda becomes empty. Examples are generic breadth-first search,
where nodes are extracted in First-In-First-Out(FIFO) order, and depth-first
search, employing Last-In-First-Out (LIFO) extraction order. Advanced ap-
proaches employ heuristic estimates to direct the search [48].

A common approach to parallelize discrete optimization is to distribute un-
visited nodes over the set of available processors. For that purpose, we im-
plemented the traversal of the subtree mounted at an unvisited node as a
COHESION task. Consequently, the task pool effectively is equivalent with the
agenda.

6.3.2 Identifying crosscutting concerns

Aspect-oriented design [50] distinguishes between core and crosscutting con-
cerns. One approach to identify crosscutting concerns is to dissect the system
into essence and incarnation [49]. The essence of a system is constituted by
its requirements and properties that would exist, even if there was perfect
technology at hand. The incarnation of a system is the sum of all persons and
machines realizing the essence. Both differ only because of the lack of perfect
technology.

Load balancing is the first example of a crosscutting concern, whose neces-
sity results from the inability of a single processor to solve the problem in
acceptable time. Another one is fault tolerance, resulting from unreliability.
The third crosscutting concern is termination detection which stems from the
lack of complete information about the status of the distributed search.

30



public void traverse (Agenda agenda, Node root) {

agenda.insert (root) C

while (!agenda.isEmpty()) {

Termination
Detection

Load
Balancing

payouerg
yser

u client part - server part (COHESION component)

Fig. 9. Aspect-oriented decomposition of a heuristic search procedure.
6.3.3 Implementation

An aspect describes the modular implementation of the client-part of a cross-
cutting concern. This definition separates the crosscutting client-part and the
conventionally implemented server-part and allows a modular and reusable
implementation of the concern. Only the client-part has to be adapted to a
new environment. For our implementation, we used Aspect] which provides
the following concepts: join point, pointcut, advice and introduction. Introduc-
tions statically extend the signature of classes, e.g. by adding fields or methods.
Pointcuts allow the declaration of sets of join points (well-defined points in
the control flow), to which advice can be applied. For example, the point-
cut call(public void Agenda+.add(Node)) includes all calls adding nodes
to objects implementing the interface Agenda. As explained subsequently, all
functionality required for integration can be coherently encapsulated within
AspectJ aspects. Existing code implementing search remains unmodified (cf.
Figure 9).

Load Balancing. To achieve dynamic distribution of unvisisted tree nodes,
COHESION’s load balancing module requires certain information — for ex-
ample the current load status of the local agenda. To provide this infor-
mation, we define pointcuts intercepting calls changing this status. Advice
attached to these pointcuts calls observing methods of the corresponding
COHESION module. These pointcuts combined with the appropriate advice
represent the client-part, while the original load balancing module acts as
the server-part (see Figure 9).

Also, methodology is required to balance the load status of agendas on
different hosts, e.g. to initiate the transfer of tree nodes representing their
corresponding subtrees from one agenda to its remote counterpart. Thus,
agendas must provide the required signature that is accessed by the instru-
mented COHESION module. Aspect-orientation supports this by the concept
of introduction. The agenda’s signature is enriched by a method to steal
tasks, like public Node[] Agenda.stealNodes() { /*x ... */ }.

Fault tolerance. Here, the corresponding COHESION module is interested

in actions transferring tree nodes between hosts. By monitoring these, it
keeps track of dispatched workload and all significant changes to the agenda.

31



Runtime [s] Speedup Efficiency [%)]

Sequential Type-1 24678
Type-11 26120
Parallel Stable 562 43,9 54,9
Volatile 1718 14,4 18,0
Table 2

Performance results of Traveling Salesperson Problem

This functionality is added through pointcuts intercepting balancing ac-
tions, whose advice in turn informs the observing COHESION bundle. Our
implementation creates proxies whenever a tree node is farmed out for re-
mote traversal. When it decides, that a task should be restarted, i.e. failure
detection signalizes the loss of the host the node was sent to, a local copy of
the node is reinserted into the local agenda. For dealing with CPU volatil-
ity the affected host tries to send back partially handled workload, i.e. the
remaining unvisited nodes of the subtree received through its root node.

Termination Detection. We use a tree-based approach for termination
detection. Unvisited nodes are counted and hosts are informed about the
remote traversal of delegated subtrees. To be able to do this, the respective
module must be informed every time a node has been visited or is branched
(the corresponding pointcuts are illustrated in Figure 9). Also, it must be
notified every time a node is moved to another host through load balancing
and when a node and it’s subtree have been traversed remotely. This is
implemented by pointcuts that intercept balancing actions.

6.3.4 Performance Evaluation

We conducted tests with random instances of the Traveling Salesperson Prob-
lem (TSP) solved by a Branch-and-Bound approach. Bounds are piggybacked
on balancing and traversal notification messages. This optimization turned out
to be more efficient than groupcasting them. The testbed consisted of 48 Co-
HESION nodes running on Type-I and 32 COHESION nodes running on Type-II
nodes. Table 2 shows results based on 10 program runs for each setting. The
simulation of volatility is based on per node event intervals of 5 minutes with
10% host failures. Speedups and efficiencies are computed using the sequential
runtime on the faster host type (Type-I). The results show, that even under
worst-case volatility, our Desktop Grid approach can be beneficially employed
for speeding-up real world applications.

32



7 Conclusion

In this paper, we reported on the design and application of our Desktop Grid
platform COHESION. Our research aims at extending the scope of Desktop
Grid computing beyond plain master/worker parallelism applied by classical
Desktop Grid approaches. In the light of a class of (irregularly structured)
task-parallel problems we discussed, how P2P principles can be employed to
realize parallel programming models with more complex interaction patterns.

An important finding of our work is, that employing P2P concepts results in a
multitude of options for realizing pertinent system functionality (e.g. network
substrates, multicast operations, or membership protocols). However, appli-
cation performance often strongly depends on choosing a specific point within
this design space, which is also dependent on the actual parallel environment.
Hence, COHESION is based on a microkernel system architecture that allows
such application specific customization of system functionality in a robust,
coordinated, and secure way.

Still, in spite of all the factors explored in this paper, this research is not an
exhaustive evaluation of all aspects of P2P Desktop Grid computing. In partic-
ular, it is not yet clear, whether the combination of the Desktop Grid approach
and P2P techniques can be used to open up additional problem classes. An
interesting question is, whether data-parallel problems can also profit from
the Desktop Grid approach. Dealing with volatility would require frequent
repartitioning and remapping of the data set. In principle such operations can
also be efficiently accomplished by P2P style communication. However, due
to their synchronous nature their performance impact can be expected to be
far more relevant to the overall performance.

References

[1] Cohesion website, http://www.cohesion.de, last accessed 06/05/2007.

[2] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing
Infrastructure, 2nd Edition, Morgan Kaufmann, 2004.

[3] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the Grid: Enabling
scalable virtual organizations, The International Journal of High Performance
Computing Applications 15 (3) (2001) 200-222.

[4] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, A. A. Chien, Characterizing
and evaluating desktop grids: An empirical study, in: Proc. of International
Parallel and Distributed Processing Symposium, Sante Fe, New Mexico, 2004.

33



[5] D.P. Anderson, G. Fedak, The computational and storage potential of volunteer
computing, in: Proc. of the Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2006), Singapore, 2006, pp. 73-80.

[6] I. Foster, A. Iamnitchi, On death, taxes, and the convergence of peer-to-peer
and grid computing, in: International workshop on peer-to-peer systems (IPTPS
2003), Berkeley, CA, USA, 2003.

[7] I. Foster, Globus toolkit version 4: Software for service-oriented systems, Journal
of Computer Science and Technology 21 (4) (2006) 513-520.

[8] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology of the grid: An
open grid services architecture for distributed systems integration, available
from http://www.globus.org, last accessed 03/21/2007.

[9] R. Gupta, V. Sekhri, A. K. Somani, CompuP2P: An architecture for internet
computing using peer-to-peer networks, IEEE Transactions on Parallel and
Distributed Systems 17 (11) (2006) 1306—1320.

[10] D. P. Anderson, BOINC: A System for Public-Resource Computing and
Storage, in: 5th IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, USA, 2004.

[11] A. Chien, B. Calder, S. Elbert, K. Bhatia, Entropia: architecture and
performance of an enterprise desktop grid system, Journal of Parallel
Distributed Computing 63 (2003) 597-610.

[12] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Néri,
O. Lodygensky, Computing on large-scale distributed systems: XtremWeb
architecture, programming models, security, tests and convergence with grid,
Future Generation Computer Systems 21 (3) (2005) 417-437.

[13] J. Verbeke, N. Nadgir, G. Ruetsch, I. Sharapov, Framework for Peer-to-Peer
Distributed Computing in a Heterogeneous, Decentralized Environment, in:
Proceedings of the Third International Workshop on Grid Computing (GRID
’02), Springer-Verlag, London, UK, 2002, pp. 1-12.

[14] Y. T. Kazuyuki Shudo, S. Sekiguchi, P3: P2P-based middleware enabling
transfer and aggregation of computational resources, in: Proc. Cluster
Computing and Grid 2005 (Fifth Int’l Workshop on Global and Peer-to-Peer
Computing), Cardiff, UK, 2005.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, in: Proceedings
of the ACM SIGCOMM ’01 Conference, San Diego, California, 2001.

[16] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, V. Sunderam, Towards self-organizing
distributed computing frameworks: The H20 approach, Parallel Processing
Letters 13 (2) (2003) 273-290.

[17] M. Migliardi, V. Sunderam, The harness metacomputing framework, in: In Proc.
of the Ninth SIAM Conference on Parallel Processing for Scientic Computing,
S. Antonio (TX), USA, 1999.

34



[18] C. Engelmann, G. A. Geist, A lightweight kernel for the harness metacomputing
framework, in: IPDPS ’05: Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) - Workshop 1, IEEE
Computer Society, Washington, DC, USA, 2005, p. 120.2.

[19] D. Kurzyniec, T. Wrzosek, V. Sunderam, A. Sominski, Rmix: A multiprotocol
rmi framework for java, in: IPDPS ’03: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, IEEE Computer Society,
Washington, DC, USA, 2003, p. 140.

[20] Y. Sun, C.-L. Wang, Solving irregularly structured problems based on
distributed object model, Parallel Computing 29 (11-12) (2003) 1539-1562.

[21] W. Blochinger, W. Westje, W. Kiichlin, S. Wedeniwski, ZetaSAT — Boolean
satisfiability solving on desktop grids, in: Proc. of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2005), Vol. 2, Cardiff,
UK, 2005, pp. 1079-1086.

[22] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, Z. Xu, Peer-to-Peer Computing, Tech. rep., Hewlett Packard (2002).

[23] B. Ford, D. Kegel, P. Srisuresh, Peer-to-peer communication across network
address translators, in: Proceedings of the 2005 USENIX Technical Conference,
2005.

[24] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, H. Casanova, On resource
volatility in enterprise desktop grids, in: Proceedings of the Second IEEE
International Conference on e-Science and Grid Computing, IEEE Computer
Society, Washington, DC, USA, 2006, p. 78.

[25] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, D. Anderson, A
new major SETI project based on Project Serendip data and 100,000 personal
computers, in: Proc. of the 5th International Conference on Bioastronomy, 1997.

[26] S. Schulz, W. Blochinger, An integrated approach for managing peer-to-peer
desktop grid systems, in: Proc. of the Seventh IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2007), Rio de Janeiro, Brazil,
2007, pp. 233-240.

[27] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture - A System of Patterns, John Wiley and Sons
Ltd, 1996, chichester, UK.

[28] OSGi™. The Dynamic Module System for Java™ http://www.osgi.org, last
accessed 03/21/2007.

[29] B. Calder, A. A. Chien, J. Wang, D. Yang, The entropia virtual machine for
desktop grids, in: VEE 05: Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments, ACM Press, New York, NY,
USA, 2005, pp. 186-196.

35



[30] G. Antoniu, P. Hatcher, M. Jan, D. A. Noblet, Performance evaluation of
jxta communication layers, in: Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’05), IEEE Computer
Society, Washington, DC, USA, 2005, pp. 251-258.

[31] E. Halepovic, R. Deters, The costs of using jxta, in: Proceedings of the 3rd
International Conference on Peer-to-Peer Computing, IEEE Computer Society,
Washington, DC, USA, 2003, p. 160.

[32] J.-M. Seigneur, JXTA Pipe Performance, available from http://bench.jxta.org,
last accessed 03/07/2007.

[33] K. Burbeck, D. Garpe, S. Nadjm-Tehrani, Scale-up and performance studies
of three agent platforms, in: IEEE International Conference on Performance,
Computing, and Communications, 2004, pp. 857— 863.

[34] Jive  Software, Scalability: ~Turn it to eleven, available from
http://www.igniterealtime.org, last accessed 03/07/2007.

[35] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.-C. Hugly,
E. Pouyoul, B. Yeager, Project JXTA 2.0 Super-Peer Virtual Network, Tech.
rep., Sun Microsystems (May 2003).

[36) XMPP Standards Foundation Website, http://www.xmpp.org, last accessed
03/21,/2007.

[37] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns. Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[38] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, Y. Minsky, Bimodal
Multicast, ACM Trans. Comput. Syst. 17 (2) (1999) 41-88.

[39] XQuery 1.0: An XML Query Language, W3C Working Draft. Available from
http://www.w3.org/TR/xquery, last accessed 03/21/2007.

[40] I. Gupta, T. D. Chandra, G. S. Goldszmidt, On Scalable and Efficient
Distributed Failure Detectors, in: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing, ACM Press, 2001, pp. 170—
179.

[41] A. J. Ganesh, A.-M. Kermarrec, L. Massouli, Peer-to-Peer Membership
Management for Gossip-based Protocols, IEEE Trans. Comput. 52 (2) (2003)
139-149.

[42] A. Das, I. Gupta, A. Motivala, SWIM: Scalable Weakly-consistent Infection-
style Process Group Membership Protocol, in: Proceedings of the International
Conference on Dependable Systems and Networks (DSN 2002), 23-26 June 2002,
Bethesda, MD, USA, IEEE Computer Society, 2002, pp. 303-312.

[43] T.-H. Lai, S. Sahni, Anomalies in parallel branch-and-bound algorithms,
Communications of the ACM 27 (6) (1984) 594-602.

36



[44] K. H. Randall, Cilk: Efficient multithreaded computing, Ph.D. thesis, MIT
Department of Electrical Engineering and Computer Science (Jun. 1998).

[45] W. Blochinger, W. Kiichlin, The design of an API for strict multithreading in
C++, in: H. Kosch, L. Boszorményi, H. Hellwagner (Eds.), Proc. of 9th Intl.
Conf. Euro-Par 2003, no. 2790 in LNCS, Springer-Verlag, Klagenfurt, Austria,
2003, pp. 722-731.

[46] B. Wilkinson, M. Allen, Parallel Programming. Techniques and Applications
using Networked Workstations and Parallel Computers, Prentice Hall, New
Jersey, 1999.

[47] W. Blochinger, C. Dangelmayr, S. Schulz, Aspect-oriented parallel discrete
optimization on the Cohesion desktop grid platform, in: Proc. of the Sixth
IEEE International Symposium on Cluster Computing and the Grid (CCGrid
2006), Singapore, 2006, pp. 49-56.

[48] A. Grama, V. Kumar, State of the art in parallel search techniques for discrete
optimization problems, IEEE Transactions on Knowledge and Data Engineering
11 (1) (1999) 28-35.

[49] S. M. McMenamin, J. F. Palmer, Essential systems analysis, Yourdon Press,
Upper Saddle River, NJ, USA, 1984.

[50] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
Manning Publications Co., 2003.

37



